-
Notifications
You must be signed in to change notification settings - Fork 149
/
dpo_data_process.py
249 lines (181 loc) · 8.22 KB
/
dpo_data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import sys
sys.path.extend(['.','..'])
import os
import re
import torch
import pandas as pd
import numpy as np
import ujson
from rich import progress
import pyarrow.parquet as pq
from model.infer import ChatBot
from logger import Logger
from config import PROJECT_ROOT, InferConfig
from utils.raw_data_process import delete_file
log = Logger('data_process', save2file=True, file_name=PROJECT_ROOT + '/logs/raw_data_process.log')
def process_alpaca_gpt4_data(max_len: int=512) -> None:
''''
处理RM高质量回答部分
数据集:https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh
'''
read_file = PROJECT_ROOT + '/data/raw_data/alpaca_gpt4_data_zh.json'
save_file = PROJECT_ROOT + '/data/alpaca_gpt4_data_zh.json'
max_len += 8
my_data = []
with open(read_file, 'r', encoding='utf-8') as f:
data = ujson.load(f)
print('length of {} is {}'.format(read_file, len(data)))
for item in progress.track(data):
prompt = item['instruction']
inputs = item['input']
response = item['output']
if len(response) > max_len: continue # 超长的不要
if len(inputs.strip()) > 0:
prompt = f"{prompt},{inputs}"
if len(prompt) > max_len: continue
if len(prompt) == 0 or len(response) == 0: continue
my_data.append(
{
'prompt': prompt,
'chosen': response
}
)
print('length of {} is {}'.format(save_file, len(my_data)))
with open(save_file, 'w', encoding='utf-8') as f:
ujson.dump(my_data, f, indent=4, ensure_ascii=False)
def generate_alpaca_gpt4_reject_response(groups_cnt: int=50000, max_len: int=320, batch_size: int=32) -> None:
'''生成不是很满意的回答回答
'''
print('load model...')
# load config
infer_config = InferConfig()
chatbot = ChatBot(infer_config)
model = chatbot.model
tokenizer = chatbot.tokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
finetune_file = PROJECT_ROOT + '/data/alpaca_gpt4_data_zh.json'
save_rw_json_file = PROJECT_ROOT + '/data/my_dpo_alpaca_gpt4_data_zh.json'
# save_rw_parquet_file = PROJECT_ROOT + '/data/my_rlhf_dataset.parquet'
data = []
with open(finetune_file, 'r', encoding='utf-8') as f:
data = ujson.load(f)
log.info('length of {} is {}'.format(save_rw_json_file, len(data)), save_to_file=True)
model_outs = []
batch_prompt = []
process_item = []
for i, item in progress.track(enumerate(data), total=len(data)):
# 模型生成的答案为拒绝答案
batch_prompt.append(f"{item['prompt']}[EOS]")
process_item.append(item)
if i % 500 == 0:
print('process {} items.'.format(i))
if len(batch_prompt) >= batch_size or i == len(data) - 1:
encoded = tokenizer.batch_encode_plus(batch_prompt, truncation=False, padding=True)
with torch.no_grad():
input_ids = torch.LongTensor(encoded.input_ids).to(device)
attention_mask = torch.LongTensor(encoded.attention_mask).to(device)
outputs = model.my_generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_seq_len=infer_config.max_seq_len,
search_type='greedy',
)
outputs = tokenizer.batch_decode(outputs.cpu().numpy(), clean_up_tokenization_spaces=True, skip_special_tokens=True)
model_outs.extend(outputs)
batch_prompt = []
if len(model_outs) % 2000 == 0:
for i in range(len(model_outs)):
process_item[i]['reject'] = model_outs[i]
try:
with open(PROJECT_ROOT + '/data/outs.ckp.json', 'w', encoding='utf-8') as f:
ujson.dump(process_item, f, indent=4, ensure_ascii=False)
except Exception as e:
print(e)
for i in range(len(model_outs)):
process_item[i]['reject'] = model_outs[i]
with open(save_rw_json_file, 'w', encoding='utf-8') as f:
ujson.dump(process_item, f, indent=4, ensure_ascii=False)
# df = pd.DataFrame(data)
# write_single_parquet_file(save_rw_parquet_file, df)
def replace_line(s: str) -> str:
'''将双斜杠替换为单斜杠,既是 \\n 替换为 \n
'''
return re.sub('\\\\n', '\n', s)
def merge_rlhf_data(max_len: int=512) -> None:
''''
处理RM高质量回答部分
数据集:https://huggingface.co/datasets/Skepsun/huozi_rlhf_data_json
https://huggingface.co/datasets/beyond/rlhf-reward-single-round-trans_chinese
'''
my_data = []
read_files = [
PROJECT_ROOT + '/data/raw_data/huozi_rlhf_data.json',
PROJECT_ROOT + '/data/my_dpo_alpaca_gpt4_data_zh.json',
]
save_file = PROJECT_ROOT + '/data/my_dpo_data.json'
if os.path.exists(save_file):
assert delete_file(save_file)
max_len += 8 # for eos token
for read_file in read_files:
items = []
with open(read_file, 'r', encoding='utf-8') as f:
items = ujson.load(f)
for item in progress.track(items):
prompt, chosen, reject = item['prompt'], item['chosen'], item['reject']
if len(prompt) > max_len or len(chosen) > max_len or len(reject) > max_len:
continue
# reject.strip() == chosen.strip(),这两个相同的也不要
if len(prompt) == 0 or len(chosen) == 0 or len(reject) == 0 or reject.strip() == chosen.strip():
continue
my_data.append({
'prompt': replace_line(prompt),
'chosen': replace_line(chosen),
'rejected': replace_line(reject),
})
read_files = [
PROJECT_ROOT + '/data/raw_data/train-00000-of-00001-789dc5dece0f1fc1.parquet',
PROJECT_ROOT + '/data/raw_data/test-00000-of-00001-8ecd46436fadcf7f.parquet',
]
for read_file in read_files:
pf = pq.read_table(read_file)
for prompt, chosen, rejected in progress.track(zip(pf['prompt'], pf['chosen'], pf['rejected']), total=pf.num_rows):
prompt, chosen, rejected = prompt.as_py(), chosen.as_py(), rejected.as_py()
if len(prompt) > max_len or len(chosen) > max_len or len(rejected) > max_len:
continue
if len(prompt) == 0 or len(chosen) == 0 or len(rejected) == 0 or rejected.strip() == chosen.strip():
continue
my_data.append({
'prompt': replace_line(prompt),
'chosen': replace_line(chosen),
'rejected': replace_line(rejected),
})
print('length of {} is {}'.format(save_file, len(my_data)))
with open(save_file, 'w', encoding='utf-8') as f:
ujson.dump(my_data, f, indent=4, ensure_ascii=False)
def split_train_eval_dataset() -> None:
'''划分数据集
'''
rw_json_file = PROJECT_ROOT + '/data/my_dpo_data.json'
train_file = PROJECT_ROOT + '/data/my_dpo_train.json'
eval_file = PROJECT_ROOT + '/data/my_dpo_eval.json'
data = []
with open(rw_json_file, 'r', encoding='utf-8') as f:
data = ujson.load(f)
np.random.shuffle(data)
split_idx = int(len(data) * 0.99)
train_data = data[0: split_idx]
eval_data = data[split_idx: ]
log.info('train size: {}, eval size:{}'.format(len(train_data), len(eval_data)), save_to_file=True)
with open(train_file, 'w', encoding='utf-8') as f:
ujson.dump(train_data, f, indent=4, ensure_ascii=False)
with open(eval_file, 'w', encoding='utf-8') as f:
ujson.dump(eval_data, f, indent=4, ensure_ascii=False)
if __name__ == '__main__':
# 1. 处理chosen文本
# process_alpaca_gpt4_data()
# 2. 生成rejected文本
# generate_alpaca_gpt4_reject_response()
# 合并数据集
merge_rlhf_data()
# 3. split train and eval dataset
# split_train_eval_dataset()