forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dispatch_jit.py
116 lines (100 loc) · 3.55 KB
/
test_dispatch_jit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import numpy as np
from utils import extra_cc_args, paddle_includes
import paddle
from paddle.utils.cpp_extension import get_build_directory, load
from paddle.utils.cpp_extension.extension_utils import run_cmd
# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file = f'{get_build_directory()}\\dispatch_op\\dispatch_op.pyd'
if os.name == 'nt' and os.path.isfile(file):
cmd = f'del {file}'
run_cmd(cmd, True)
dispatch_op = load(
name='dispatch_op',
sources=['dispatch_test_op.cc'],
extra_include_paths=paddle_includes, # add for Coverage CI
extra_cxx_cflags=extra_cc_args,
verbose=True,
)
class TestJitDispatch(unittest.TestCase):
def setUp(self):
paddle.set_device('cpu')
def run_dispatch_test(self, func, dtype):
np_x = np.ones([2, 2]).astype(dtype)
x = paddle.to_tensor(np_x)
out = func(x)
np_x = x.numpy()
np_out = out.numpy()
self.assertTrue(dtype in str(np_out.dtype))
np.testing.assert_array_equal(
np_x,
np_out,
err_msg=f'custom op x: {np_x},\n custom op out: {np_out}',
)
def test_dispatch_integer(self):
dtypes = ["int32", "int64", "int8", "uint8", "int16"]
for dtype in dtypes:
self.run_dispatch_test(dispatch_op.dispatch_test_integer, dtype)
def test_dispatch_complex(self):
dtypes = ["complex64", "complex128"]
for dtype in dtypes:
self.run_dispatch_test(dispatch_op.dispatch_test_complex, dtype)
def test_dispatch_float_and_integer(self):
dtypes = [
"float32",
"float64",
"int32",
"int64",
"int8",
"uint8",
"int16",
]
for dtype in dtypes:
self.run_dispatch_test(
dispatch_op.dispatch_test_float_and_integer, dtype
)
def test_dispatch_float_and_complex(self):
dtypes = ["float32", "float64", "complex64", "complex128"]
for dtype in dtypes:
self.run_dispatch_test(
dispatch_op.dispatch_test_float_and_complex, dtype
)
def test_dispatch_float_and_integer_and_complex(self):
dtypes = [
"float32",
"float64",
"int32",
"int64",
"int8",
"uint8",
"int16",
"complex64",
"complex128",
]
for dtype in dtypes:
self.run_dispatch_test(
dispatch_op.dispatch_test_float_and_integer_and_complex, dtype
)
def test_dispatch_float_and_half(self):
dtypes = ["float32", "float64", "float16"]
for dtype in dtypes:
self.run_dispatch_test(
dispatch_op.dispatch_test_float_and_half, dtype
)
if __name__ == '__main__':
unittest.main()