forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_custom_relu_op_xpu_setup.py
147 lines (121 loc) · 4.6 KB
/
test_custom_relu_op_xpu_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import site
import sys
import unittest
import numpy as np
from utils import check_output, check_output_allclose
import paddle
from paddle import static
from paddle.utils.cpp_extension.extension_utils import run_cmd
from paddle.vision.transforms import Compose, Normalize
def custom_relu_dynamic(func, device, dtype, np_x, use_func=True):
paddle.set_device(device)
t = paddle.to_tensor(np_x, dtype=dtype)
t.stop_gradient = False
t.retain_grads()
out = func(t) if use_func else paddle.nn.functional.relu(t)
return out.numpy()
def custom_relu_static(
func, device, dtype, np_x, use_func=True, test_infer=False
):
paddle.enable_static()
paddle.set_device(device)
with static.scope_guard(static.Scope()):
with static.program_guard(static.Program()):
x = static.data(name='X', shape=[None, 8], dtype=dtype)
out = func(x) if use_func else paddle.nn.functional.relu(x)
exe = static.Executor()
exe.run(static.default_startup_program())
# in static graph mode, x data has been covered by out
out_v = exe.run(
static.default_main_program(),
feed={'X': np_x},
fetch_list=[out],
)
paddle.disable_static()
return out_v
class TestNewCustomOpXpuSetUpInstall(unittest.TestCase):
def setUp(self):
cur_dir = os.path.dirname(os.path.abspath(__file__))
cmd = (
f'cd {cur_dir} && {sys.executable} custom_relu_xpu_setup.py install'
)
run_cmd(cmd)
site_dir = site.getsitepackages()[0]
custom_egg_path = [
x
for x in os.listdir(site_dir)
if 'custom_relu_xpu_module_setup' in x
]
assert len(custom_egg_path) == 1, "Matched egg number is %d." % len(
custom_egg_path
)
sys.path.append(os.path.join(site_dir, custom_egg_path[0]))
# usage: import the package directly
import custom_relu_xpu_module_setup
self.custom_op = custom_relu_xpu_module_setup.custom_relu
self.dtypes = ['float32']
self.device = 'xpu'
# config seed
SEED = 2021
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def test_static(self):
for dtype in self.dtypes:
x = np.random.uniform(-1, 1, [4, 8]).astype(dtype)
out = custom_relu_static(self.custom_op, self.device, dtype, x)
pd_out = custom_relu_static(
self.custom_op, self.device, dtype, x, False
)
check_output(out, pd_out, "out")
def test_dynamic(self):
for dtype in self.dtypes:
x = np.random.uniform(-1, 1, [4, 8]).astype(dtype)
out = custom_relu_dynamic(self.custom_op, self.device, dtype, x)
pd_out = custom_relu_dynamic(
self.custom_op, self.device, dtype, x, False
)
check_output(out, pd_out, "out")
def test_with_dataloader(self):
paddle.disable_static()
paddle.set_device(self.device)
# data loader
transform = Compose(
[Normalize(mean=[127.5], std=[127.5], data_format='CHW')]
)
train_dataset = paddle.vision.datasets.MNIST(
mode='train', transform=transform
)
train_loader = paddle.io.DataLoader(
train_dataset,
batch_size=64,
shuffle=True,
drop_last=True,
num_workers=0,
)
for batch_id, (image, _) in enumerate(train_loader()):
out = self.custom_op(image)
pd_out = paddle.nn.functional.relu(image)
check_output_allclose(out, pd_out, "out", atol=1e-2)
if batch_id == 5:
break
paddle.enable_static()
if __name__ == '__main__':
# compile, install the custom op egg into site-packages under background
# Currently custom XPU op does not support Windows
if os.name == 'nt':
sys.exit()
unittest.main()