forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_relu_op_xpu.cc
66 lines (56 loc) · 2.02 KB
/
custom_relu_op_xpu.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include "paddle/extension.h"
#define CHECK_CPU_INPUT(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")
#define CHECK_XPU_INPUT(x) PD_CHECK(x.is_xpu(), #x " must be a XPU Tensor.")
template <typename data_t>
void relu_cpu_forward_kernel(const data_t* x_data,
data_t* out_data,
int64_t x_numel) {
PD_CHECK(x_data != nullptr, "x_data is nullptr.");
PD_CHECK(out_data != nullptr, "out_data is nullptr.");
for (int64_t i = 0; i < x_numel; ++i) {
out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
}
}
std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
CHECK_CPU_INPUT(x);
auto out = paddle::empty_like(x);
PD_DISPATCH_FLOATING_TYPES(
x.type(), "relu_cpu_forward", ([&] {
relu_cpu_forward_kernel<data_t>(
x.data<data_t>(), out.data<data_t>(), x.numel());
}));
return {out};
}
std::vector<paddle::Tensor> relu_xpu_forward(const paddle::Tensor& x) {
CHECK_XPU_INPUT(x);
auto out = paddle::relu(x);
return {out};
}
std::vector<paddle::Tensor> ReluForward(const paddle::Tensor& x) {
if (x.is_cpu()) {
return relu_cpu_forward(x);
} else if (x.is_xpu()) {
return relu_xpu_forward(x);
} else {
PD_THROW("Not implemented.");
}
}
PD_BUILD_OP(custom_relu)
.Inputs({"X"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(ReluForward));