-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
113 lines (91 loc) · 3.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
## GAN Variants
from GAN import GAN
from CGAN import CGAN
from infoGAN import infoGAN
from ACGAN import ACGAN
from EBGAN import EBGAN
from WGAN import WGAN
from WGAN_GP import WGAN_GP
from DRAGAN import DRAGAN
from LSGAN import LSGAN
from BEGAN import BEGAN
from Fisher_GAN import FisherGAN
from SN_Fisher_GAN import SN_FisherGAN
## VAE Variants
from VAE import VAE
from CVAE import CVAE
from utils import show_all_variables
from utils import check_folder
import tensorflow as tf
import argparse
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of GAN collections"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--gan_type', type=str, default='GAN',
choices=['GAN', 'CGAN', 'infoGAN', 'ACGAN', 'EBGAN', 'BEGAN', 'WGAN', 'WGAN_GP', 'DRAGAN', 'LSGAN', 'FisherGAN', 'SN_FisherGAN', 'VAE', 'CVAE'],
help='The type of GAN', required=True)
parser.add_argument('--dataset', type=str, default='mnist', choices=['mnist', 'fashion-mnist', 'CelebA'],
help='The name of dataset')
parser.add_argument('--epoch', type=int, default=20, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch')
parser.add_argument('--z_dim', type=int, default=64, help='Dimension of noise vector')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --result_dir
check_folder(args.result_dir)
# --result_dir
check_folder(args.log_dir)
# --epoch
assert args.epoch >= 1, 'number of epochs must be larger than or equal to one'
# --batch_size
assert args.batch_size >= 1, 'batch size must be larger than or equal to one'
# --z_dim
assert args.z_dim >= 1, 'dimension of noise vector must be larger than or equal to one'
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# open session
models = [GAN, CGAN, infoGAN, ACGAN, EBGAN, WGAN, WGAN_GP, DRAGAN,
LSGAN, BEGAN, FisherGAN, SN_FisherGAN, VAE, CVAE]
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# declare instance for GAN
gan = None
for model in models:
if args.gan_type == model.model_name:
gan = model(sess,
epoch=args.epoch,
batch_size=args.batch_size,
z_dim=args.z_dim,
dataset_name=args.dataset,
checkpoint_dir=args.checkpoint_dir,
result_dir=args.result_dir,
log_dir=args.log_dir)
if gan is None:
raise Exception("[!] There is no option for " + args.gan_type)
# build graph
gan.build_model()
# show network architecture
show_all_variables()
# launch the graph in a session
gan.train()
print(" [*] Training finished!")
# visualize learned generator
gan.visualize_results(args.epoch-1)
print(" [*] Testing finished!")
if __name__ == '__main__':
main()