-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmajority_classifier.py
59 lines (45 loc) · 2.59 KB
/
majority_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import itertools
from collections import Counter
import coloredlogs
import logging
import torch
from sklearn import metrics
import numpy as np
logger = logging.getLogger('MajorityClassifier Log')
coloredlogs.install(logger=logger, level='DEBUG', fmt='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
class MajorityClassifier:
def __init__(self):
logger.info('Majority classifier instantiated')
def training(self, train_episodes, val_episodes):
return 0
def testing(self, test_episodes):
episode_accuracies, episode_precisions, episode_recalls, episode_f1s = [], [], [], []
for episode_id, episode in enumerate(test_episodes):
for n_batch, (_, _, batch_y) in enumerate(episode.support_loader):
pass
class_counts = Counter(x for x in itertools.chain(*batch_y) if x != -1)
majority_class = class_counts.most_common(1)[0][0]
for n_batch, (_, _, batch_y) in enumerate(episode.query_loader):
batch_y = torch.tensor(batch_y).view(-1)
relevant_indices = torch.nonzero(batch_y != -1).view(-1).detach()
true_labels = batch_y[relevant_indices]
predictions = torch.full_like(true_labels, majority_class)
true_labels = true_labels.numpy()
predictions = predictions.numpy()
accuracy = metrics.accuracy_score(true_labels, predictions)
precision = metrics.precision_score(true_labels, predictions, average='macro')
recall = metrics.recall_score(true_labels, predictions, average='macro')
f1_score = metrics.f1_score(true_labels, predictions, average='macro')
logger.info('Episode {}/{}, task {} [query set]: Accuracy = {:.5f}, precision = {:.5f}, '
'recall = {:.5f}, F1 score = {:.5f}'.format(episode_id + 1, len(test_episodes), episode.task_id,
accuracy, precision, recall, f1_score))
episode_accuracies.append(accuracy)
episode_precisions.append(precision)
episode_recalls.append(recall)
episode_f1s.append(f1_score)
logger.info('Avg meta-testing metrics: Accuracy = {:.5f}, precision = {:.5f}, recall = {:.5f}, '
'F1 score = {:.5f}'.format(np.mean(episode_accuracies),
np.mean(episode_precisions),
np.mean(episode_recalls),
np.mean(episode_f1s)))
return np.mean(episode_f1s)