Q1Net: Quality Level Prediction of Image Compression using Block-wise Confidence-aware CNN - BMVC 2021
https://www.bmvc2021-virtualconference.com/conference/papers/paper_0813.html
Kyuwon Kim (chammoru at gmail, q1.kim at samsung)
Chulju Yang (ijn9429 at gmail, chulju at samsung)
@InProceedings{kim2021q1net,
title={Quality Level Prediction of Image Compression using Block-wise Confidence-aware CNN.},
author={Kim, Kyuwon and Yang, Chulju},
booktitle={Proceedings of the British Machine Vision Conference},
month={Nov.},
year={2021}
}
- TensorFlow >= 2.4
DIV2K dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K/)
git clone https://github.com/chammoru/Q1Net.git
# Go to the source directory
cd Q1Net/classifier
# Setup environment
. ./env.sh
python3 ./predict_cls.py --in_path ../sample_image/monarch_jpeg_q20.png --comp_type jpeg_paper
# Download dataset
wget http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_HR.zip
unzip DIV2K_valid_HR.zip
python3 evaluate_cls.py --comp_type jpeg_paper --in_path DIV2K_valid_HR
# Download dataset
wget http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip
unzip DIV2K_train_HR.zip
sh batch_train_jpeg_paper.sh
In the train.py
, gen_data.py
creates a hdf5 file for training data:
python3 ./to_tflite.py --comp_type jpeg_paper
- Image/Photo Editor
- (Streaming) Video Player and Photo Viewer
- Web Browser
- Video Conferencing
- Instance Messaging App
- And many more