This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 303
/
Copy pathtrain.py
156 lines (125 loc) · 5.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import copy
import numpy as np
import chainer
from chainer.datasets import TransformDataset
from chainer.optimizer import WeightDecay
from chainer import serializers
from chainer import training
from chainer.training import extensions
from chainer.training import triggers
from chainercv.datasets import voc_detection_label_names
from chainercv.datasets import VOCDetectionDataset
from chainercv.extensions import DetectionVOCEvaluator
from chainercv.links.model.ssd import ConcatenatedDataset
from chainercv.links.model.ssd import GradientScaling
from chainercv.links.model.ssd import multibox_loss
from chainercv.links import SSD300
from chainercv import transforms
from chainercv.links.model.ssd import crop_bbox
from chainercv.links.model.ssd import random_crop_with_bbox
from chainercv.links.model.ssd import random_distort
from chainercv.links.model.ssd import resize_with_random_interpolation
class MultiboxTrainChain(chainer.Chain):
def __init__(self, model, alpha=1, k=3):
super(MultiboxTrainChain, self).__init__(model=model)
self.alpha = alpha
self.k = k
def __call__(self, imgs, gt_mb_locs, gt_mb_labels):
mb_locs, mb_confs = self.model(imgs)
loc_loss, conf_loss = multibox_loss(
mb_locs, mb_confs, gt_mb_locs, gt_mb_labels, self.k)
loss = loc_loss * self.alpha + conf_loss
chainer.reporter.report(
{'loss': loss, 'loss/loc': loc_loss, 'loss/conf': conf_loss},
self)
return loss
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batchsize', type=int, default=32)
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--out', default='result')
parser.add_argument('--resume')
args = parser.parse_args()
model = SSD300(
n_fg_class=len(voc_detection_label_names),
pretrained_model='imagenet')
model.use_preset('evaluate')
train_chain = MultiboxTrainChain(model)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
coder = copy.copy(model.coder)
coder.to_cpu()
size = model.insize
mean = model.mean
def transform(in_data):
img, bbox, label = in_data
img = random_distort(img)
if np.random.randint(2):
img, param = transforms.random_expand(
img, fill=mean, return_param=True)
bbox = transforms.translate_bbox(
bbox, y_offset=param['y_offset'], x_offset=param['x_offset'])
img, param = random_crop_with_bbox(img, bbox, return_param=True)
bbox, param = crop_bbox(
bbox, y_slice=param['y_slice'], x_slice=param['x_slice'],
contain_center_only=True, return_param=True)
label = label[param['mask']]
_, H, W = img.shape
img = resize_with_random_interpolation(img, (size, size))
bbox = transforms.resize_bbox(bbox, (H, W), (size, size))
img, params = transforms.random_flip(
img, x_random=True, return_param=True)
bbox = transforms.flip_bbox(
bbox, (size, size), x_flip=params['x_flip'])
img -= np.array(mean)[:, np.newaxis, np.newaxis]
mb_loc, mb_label = coder.encode(
transforms.resize_bbox(bbox, (size, size), (1, 1)), label)
return img, mb_loc, mb_label
train = TransformDataset(
ConcatenatedDataset(
VOCDetectionDataset(year='2007', split='trainval'),
VOCDetectionDataset(year='2012', split='trainval')
),
transform)
train_iter = chainer.iterators.MultiprocessIterator(
train, args.batchsize, n_processes=2)
test = VOCDetectionDataset(
year='2007', split='test',
use_difficult=True, return_difficult=True)
test_iter = chainer.iterators.SerialIterator(
test, args.batchsize, repeat=False, shuffle=False)
optimizer = chainer.optimizers.MomentumSGD()
optimizer.setup(train_chain)
for param in train_chain.params():
if param.name == 'b':
param.update_rule.add_hook(GradientScaling(2))
else:
param.update_rule.add_hook(WeightDecay(0.0005))
updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (120000, 'iteration'), args.out)
trainer.extend(
extensions.ExponentialShift('lr', 0.1, init=1e-3),
trigger=triggers.ManualScheduleTrigger([80000, 100000], 'iteration'))
trainer.extend(
DetectionVOCEvaluator(
test_iter, model, use_07_metric=True,
label_names=voc_detection_label_names),
trigger=(10000, 'iteration'))
log_interval = 10, 'iteration'
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.observe_lr(), trigger=log_interval)
trainer.extend(extensions.PrintReport(
[
'epoch', 'iteration',
'main/loss', 'main/loss/loc', 'main/loss/conf',
'validation/main/map', 'lr']),
trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(extensions.snapshot(), trigger=(1000, 'iteration'))
if args.resume:
serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()