-
Notifications
You must be signed in to change notification settings - Fork 126
/
resnet_features.py
312 lines (245 loc) · 10.2 KB
/
resnet_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
model_dir = './pretrained_models'
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
# class attribute
expansion = 1
num_layers = 2
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
# only conv with possibly not 1 stride
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
# if stride is not 1 then self.downsample cannot be None
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
# the residual connection
out += identity
out = self.relu(out)
return out
def block_conv_info(self):
block_kernel_sizes = [3, 3]
block_strides = [self.stride, 1]
block_paddings = [1, 1]
return block_kernel_sizes, block_strides, block_paddings
class Bottleneck(nn.Module):
# class attribute
expansion = 4
num_layers = 3
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
# only conv with possibly not 1 stride
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
# if stride is not 1 then self.downsample cannot be None
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
def block_conv_info(self):
block_kernel_sizes = [1, 3, 1]
block_strides = [1, self.stride, 1]
block_paddings = [0, 1, 0]
return block_kernel_sizes, block_strides, block_paddings
class ResNet_features(nn.Module):
'''
the convolutional layers of ResNet
the average pooling and final fully convolutional layer is removed
'''
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet_features, self).__init__()
self.inplanes = 64
# the first convolutional layer before the structured sequence of blocks
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# comes from the first conv and the following max pool
self.kernel_sizes = [7, 3]
self.strides = [2, 2]
self.paddings = [3, 1]
# the following layers, each layer is a sequence of blocks
self.block = block
self.layers = layers
self.layer1 = self._make_layer(block=block, planes=64, num_blocks=self.layers[0])
self.layer2 = self._make_layer(block=block, planes=128, num_blocks=self.layers[1], stride=2)
self.layer3 = self._make_layer(block=block, planes=256, num_blocks=self.layers[2], stride=2)
self.layer4 = self._make_layer(block=block, planes=512, num_blocks=self.layers[3], stride=2)
# initialize the parameters
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, num_blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
# only the first block has downsample that is possibly not None
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.inplanes, planes))
# keep track of every block's conv size, stride size, and padding size
for each_block in layers:
block_kernel_sizes, block_strides, block_paddings = each_block.block_conv_info()
self.kernel_sizes.extend(block_kernel_sizes)
self.strides.extend(block_strides)
self.paddings.extend(block_paddings)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def conv_info(self):
return self.kernel_sizes, self.strides, self.paddings
def num_layers(self):
'''
the number of conv layers in the network, not counting the number
of bypass layers
'''
return (self.block.num_layers * self.layers[0]
+ self.block.num_layers * self.layers[1]
+ self.block.num_layers * self.layers[2]
+ self.block.num_layers * self.layers[3]
+ 1)
def __repr__(self):
template = 'resnet{}_features'
return template.format(self.num_layers() + 1)
def resnet18_features(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_features(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['resnet18'], model_dir=model_dir)
my_dict.pop('fc.weight')
my_dict.pop('fc.bias')
model.load_state_dict(my_dict, strict=False)
return model
def resnet34_features(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_features(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['resnet34'], model_dir=model_dir)
my_dict.pop('fc.weight')
my_dict.pop('fc.bias')
model.load_state_dict(my_dict, strict=False)
return model
def resnet50_features(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_features(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['resnet50'], model_dir=model_dir)
my_dict.pop('fc.weight')
my_dict.pop('fc.bias')
model.load_state_dict(my_dict, strict=False)
return model
def resnet101_features(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_features(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['resnet101'], model_dir=model_dir)
my_dict.pop('fc.weight')
my_dict.pop('fc.bias')
model.load_state_dict(my_dict, strict=False)
return model
def resnet152_features(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_features(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
my_dict = model_zoo.load_url(model_urls['resnet152'], model_dir=model_dir)
my_dict.pop('fc.weight')
my_dict.pop('fc.bias')
model.load_state_dict(my_dict, strict=False)
return model
if __name__ == '__main__':
r18_features = resnet18_features(pretrained=True)
print(r18_features)
r34_features = resnet34_features(pretrained=True)
print(r34_features)
r50_features = resnet50_features(pretrained=True)
print(r50_features)
r101_features = resnet101_features(pretrained=True)
print(r101_features)
r152_features = resnet152_features(pretrained=True)
print(r152_features)