forked from geoschem/geos-chem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaerosol_mod.F90
2354 lines (2058 loc) · 93.7 KB
/
aerosol_mod.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!------------------------------------------------------------------------------
! GEOS-Chem Global Chemical Transport Model !
!------------------------------------------------------------------------------
!BOP
!
! !MODULE: aerosol_mod.F90
!
! !DESCRIPTION: Module AEROSOL\_MOD contains variables and routines for
! computing optical properties for aerosols which are needed for both the
! FAST-J photolysis and ND21 optical depth diagnostics. (bmy, 7/20/04,
! 2/10/09)
!\\
!\\
! !INTERFACE:
!
MODULE AEROSOL_MOD
!
! !USES:
!
USE PRECISION_MOD
IMPLICIT NONE
PRIVATE
!
! !PUBLIC MEMBER FUNCTIONS:
!
PUBLIC :: INIT_AEROSOL
PUBLIC :: AEROSOL_CONC
PUBLIC :: RDAER
!
! !PUBLIC DATA MEMBERS:
!
! Growth factors
REAL(fp), PUBLIC :: SIA_GROWTH
REAL(fp), PUBLIC :: ORG_GROWTH
REAL(fp), PUBLIC :: SSA_GROWTH
! Logical flags
LOGICAL, PUBLIC :: IS_OCPI
LOGICAL, PUBLIC :: IS_OCPO
LOGICAL, PUBLIC :: IS_BC
LOGICAL, PUBLIC :: IS_SO4
LOGICAL, PUBLIC :: IS_HMS
LOGICAL, PUBLIC :: IS_NH4
LOGICAL, PUBLIC :: IS_NIT
LOGICAL, PUBLIC :: IS_DST
LOGICAL, PUBLIC :: IS_SAL
LOGICAL, PUBLIC :: IS_POA
LOGICAL, PUBLIC :: IS_OPOA
LOGICAL, PUBLIC :: IS_TSOA
LOGICAL, PUBLIC :: IS_ASOA
LOGICAL, PUBLIC :: IS_SOAGX
LOGICAL, PUBLIC :: IS_SimpleSOA
LOGICAL, PUBLIC :: IS_ComplexSOA
!
! !DEFINED PARAMETERS:
!
! For SOAGX, assume the total aerosol mass/glyoxal mass = 1.d0
! for now (tmf, 1/7/09)
REAL(fp), PARAMETER, PUBLIC :: OCFG = 1.e+0_fp
!
! !REMARKS:
! References:
! ============================================================================
! (1 ) Pye, H.O.T., and J.H. Seinfeld, "A global perspective on aerosol from
! low-volatility organic compounds", Atmos. Chem. & Phys., Vol 10, pp
! 4377-4401, 2010.
! (2 ) Philip, S., R.V. Martin, J.R. Pierce, J.L. Jimenez, Q. Zhang, M.R.
! Canagaratna, D.V. Spracklen, C.R. Nowlan, L.N. Lamsal, M.J. Cooper, and
! N.A. Krotkov, "Spatially and seasonally resolved estimate of the ratio
! of global organic mass to organic carbon", Atmospheric Environment, 87,
! 34-40, doi:10.1016/j.atmosenv.2013.11.065, 2014
!
! !REVISION HISTORY:
! 20 Jul 2004 - R. Yantosca - Initial version
! See https://github.com/geoschem/geos-chem for complete history
!------------------------------------------------------------------------------
!BOC
!
! !PRIVATE TYPES:
!
! Add tracer ID flags as module variables (bmy, 6/16/16)
INTEGER :: id_BCPI, id_BCPO, id_DST1, id_DST2
INTEGER :: id_DST3, id_DST4, id_NH4, id_NIT
INTEGER :: id_OCPO, id_OCPI, id_SALA, id_SALC
INTEGER :: id_SO4, id_SO4s, id_NITs, id_NH4s
INTEGER :: id_POA1, id_POA2, id_OPOA1, id_OPOA2
INTEGER :: id_TSOA1, id_TSOA2, id_TSOA3, id_TSOA0
INTEGER :: id_ASOAN, id_ASOA1, id_ASOA2, id_ASOA3
INTEGER :: id_DUST01, id_SOAS, id_SALACL, id_HMS ! (jmm, 06/29/18)
INTEGER :: id_SOAGX, id_SOAIE
INTEGER :: id_INDIOL,id_LVOCOA
! Index to map between NRHAER and species database hygroscopic species
! NOTE: Increasing value of NRHAER in CMN_SIZE_Mod.F90 (e.g. if there is
! a new hygroscopic species) requires manual update of this mapping
! (ewl, 1/23/17)
INTEGER :: Map_NRHAER(5)
CONTAINS
!EOC
!------------------------------------------------------------------------------
! GEOS-Chem Global Chemical Transport Model !
!------------------------------------------------------------------------------
!BOP
!
! !IROUTINE: aerosol_conc
!
! !DESCRIPTION: Subroutine AEROSOL\_CONC computes aerosol concentrations in
! kg/m3 from the tracer mass in kg in the Species array. These are needed to
! compute optical properties for photolysis, for the optical depth diagnostics,
! and for the SOA concentration diagnostics. (bmy, 7/20/04, 2/10/09)
!\\
!\\
! !INTERFACE:
!
SUBROUTINE AEROSOL_CONC( Input_Opt, State_Chm, State_Diag, &
State_Grid, State_Met, RC )
!
! !USES:
!
USE ErrCode_Mod
USE ERROR_MOD
#if !defined( MODEL_CESM )
USE HCO_State_GC_Mod, ONLY : HcoState
USE HCO_Utilities_GC_Mod, ONLY : HCO_GC_EvalFld
#endif
USE Input_Opt_Mod, ONLY : OptInput
USE Species_Mod, ONLY : SpcConc
USE State_Chm_Mod, ONLY : ChmState
USE State_Diag_Mod, ONLY : DgnState
USE State_Grid_Mod, ONLY : GrdState
USE State_Met_Mod, ONLY : MetState
USE UnitConv_Mod
USE TIME_MOD, ONLY : GET_MONTH
!
! !INPUT PARAMETERS:
!
TYPE(OptInput), INTENT(IN) :: Input_Opt ! Input Options object
TYPE(GrdState), INTENT(IN) :: State_Grid ! Grid State object
TYPE(MetState), INTENT(IN) :: State_Met ! Meteorology State object
!
! !INPUT/OUTPUT PARAMETERS:
!
TYPE(ChmState), INTENT(INOUT) :: State_Chm ! Chemistry State object
TYPE(DgnState), INTENT(INOUT) :: State_Diag ! Diagnostics State object
!
! !OUTPUT PARAMETERS:
!
INTEGER, INTENT(OUT) :: RC ! Success or failure
!
! !REVISION HISTORY:
! 20 Jul 2004 - R. Yantosca - Initial version
! See https://github.com/geoschem/geos-chem for complete history
!EOP
!------------------------------------------------------------------------------
!BOC
!
! !LOCAL VARIABLES:
!
! SAVEd variables
LOGICAL, SAVE :: FIRST = .TRUE.
! Non-SAVEd variables
INTEGER :: I, J, L, N, NA, ND, K
INTEGER :: k_SO4
INTEGER :: k_ORG
INTEGER :: k_SSA
REAL(fp) :: Rad_wet, Rad_dry
REAL(fp) :: Rho_wet, Rho_dry
REAL(fp) :: REFF
! Logical flags
LOGICAL :: LCARB
LOGICAL :: LDUST
LOGICAL :: LSSALT
LOGICAL :: LSULF
! Pointers
TYPE(SpcConc), POINTER :: Spc(:)
REAL*8, POINTER :: REAA(:,:)
REAL(fp), POINTER :: AIRVOL(:,:,:)
REAL(fp), POINTER :: PMID(:,:,:)
REAL(fp), POINTER :: T(:,:,:)
REAL(fp), POINTER :: SOILDUST(:,:,:,:)
REAL(fp), POINTER :: KG_STRAT_AER(:,:,:,:)
! Other variables
INTEGER :: OrigUnit
! For spatially and seasonally varying OM/OC
CHARACTER(LEN=255) :: FIELDNAME
INTEGER :: MONTH
LOGICAL :: FND
! For errors
CHARACTER(LEN=255) :: ThisLoc
CHARACTER(LEN=1023) :: ErrMsg
!=================================================================
! AEROSOL_CONC begins here!
!=================================================================
! Assume success
RC = GC_SUCCESS
ErrMsg = ''
ThisLoc = ' -> at AEROSOL_CONC (in module GeosCore/aerosol_mod.F90)'
! Copy fields from INPUT_OPT to local variables for use below
LCARB = Input_Opt%LCARB
LDUST = Input_Opt%LDUST
LSSALT = Input_Opt%LSSALT
LSULF = Input_Opt%LSULF
! Set pointers
REAA => State_Chm%Phot%REAA
! Convert species to [kg] for this routine
CALL Convert_Spc_Units( &
Input_Opt = Input_Opt, &
State_Chm = State_Chm, &
State_Grid = State_Grid, &
State_Met = State_Met, &
outUnit = KG_SPECIES, &
origUnit = origUnit, &
RC = RC )
! Trap potential errors
IF ( RC /= GC_SUCCESS ) THEN
ErrMsg = 'Unit conversion error at start of AEROSOL_CONC!'
CALL GC_Error( ErrMsg, RC, ThisLoc )
RETURN
ENDIF
! Initialize pointers
Spc => State_Chm%Species
AIRVOL => State_Met%AIRVOL
PMID => State_Met%PMID
T => State_Met%T
SOILDUST => State_Chm%SoilDust
KG_STRAT_AER => State_Chm%KG_AER
!=================================================================
! OM/OC ratio
!
! Get spatial and seasonally varying OM/OC from Philip et al. (2014)
! or use default global mean values recommended by Aerosols WG
!=================================================================
! Get data for OM/OC for current month from HEMCO
MONTH = GET_MONTH()
IF ( MONTH == 12 .or. MONTH == 1 .or. MONTH == 2 ) THEN
FieldName = 'OMOC_DJF'
ELSE IF ( MONTH == 3 .or. MONTH == 4 .or. MONTH == 5 ) THEN
FieldName = 'OMOC_MAM'
ELSE IF ( MONTH == 6 .or. MONTH == 7 .or. MONTH == 8 ) THEN
FieldName = 'OMOC_JJA'
ELSE IF ( MONTH == 9 .or. MONTH == 10 .or. MONTH == 11 ) THEN
FieldName = 'OMOC_SON'
ENDIF
IF ( RC /= GC_SUCCESS ) RETURN
#if !defined( MODEL_CESM )
CALL HCO_GC_EvalFld( Input_Opt, State_Grid, Trim(FieldName), State_Chm%OMOC, RC, FOUND=FND )
#else
FND = .True.
RC = GC_SUCCESS
#endif
IF ( RC == GC_SUCCESS .AND. FND ) THEN
! Set OM/OC using spatially and seasonally varying data from
! Philip et al. (2014)
State_Chm%AerMass%OCFPOA(:,:) = State_Chm%OMOC(:,:) ! OM/OC for POA
State_chm%AerMass%OCFOPOA(:,:) = State_Chm%OMOC(:,:) ! OM/OC for OPOA, OCPI, and OCPO
ELSE
! Use default global mean OM/OC recommended by the Aerosols WG
State_Chm%AerMass%OCFPOA(:,:) = 1.4e+0_fp ! OM/OC for POA
State_chm%AerMass%OCFOPOA(:,:) = 2.1e+0_fp ! OM/OC for OPOA, OCPI, and OCPO
ENDIF
! Save OM/OC
State_Chm%OMOC_POA(:,:) = State_Chm%AerMass%OCFPOA(:,:)
State_Chm%OMOC_OPOA(:,:) = State_chm%AerMass%OCFOPOA(:,:)
!=================================================================
! Compute growth factors at 35% RH
!
! GF = 1 + [ ( r_wet / r_dry )^3 -1 ] * [ rho_wet / rho_dry ]
!
! and use rho_wet = 1000 kg/m3
!=================================================================
IF ( FIRST ) THEN
! Species index of REAA from RD_AOD (in fast_jx_mod.F90)
k_SO4 = 1
k_ORG = 3
k_SSA = 4
! Density of H2O [kg/m3]
Rho_wet = 1000e+0_fp
! Growth factor for SO4 + NIT + NH4
Rad_dry = REAA(1,k_SO4)
Rad_wet = REAA(1,k_SO4) + 35e+0_fp * &
( REAA(2,k_SO4) - REAA(1,k_SO4) ) / 50e+0_fp
Rho_dry = State_Chm%SpcData(id_SO4)%Info%Density
SIA_GROWTH = 1 + ( ( ( Rad_wet / Rad_dry ) ** 3 - 1 ) * &
( Rho_wet / Rho_dry ) )
! Force SIA growth to 1.1 to treat as partially crystalline
SIA_GROWTH = 1.1_fp
! Growth factor for OCPI + SOA
Rad_dry = REAA(1,k_ORG)
Rad_wet = REAA(1,k_ORG) + 35e+0_fp * &
( REAA(2,k_ORG) - REAA(1,k_ORG) ) / 50e+0_fp
IF ( IS_POA ) THEN
Rho_dry = State_Chm%SpcData(id_POA1)%Info%Density
ELSE IF ( IS_OCPI ) THEN
Rho_dry = State_Chm%SpcData(id_OCPI)%Info%Density
ENDIF
ORG_GROWTH = 1 + ( ( ( Rad_wet / Rad_dry ) ** 3 - 1 ) * &
( Rho_wet / Rho_dry ) )
! Growth factor for SALA
Rad_dry = REAA(1,k_SSA)
Rad_wet = REAA(1,k_SSA) + 35e+0_fp * &
( REAA(2,k_SSA) - REAA(1,k_SSA) ) / 50e+0_fp
Rho_dry = State_Chm%SpcData(id_SALA)%Info%Density
SSA_GROWTH = 1 + ( ( ( Rad_wet / Rad_dry ) ** 3 - 1 ) * &
( Rho_wet / Rho_dry ) )
! Print values to log file
IF ( Input_Opt%Verbose ) THEN
WRITE( 6,'(a)') 'Growth factors at 35% RH:'
WRITE( 6, 100 ) SIA_GROWTH, ' for SO4, NIT, and NH4'
WRITE( 6, 100 ) ORG_GROWTH, ' for OCPI and SOA'
WRITE( 6, 100 ) SSA_GROWTH, ' for SALA'
100 FORMAT(F5.2,A)
ENDIF
! Reset first-time flag
FIRST = .FALSE.
ENDIF
!$OMP PARALLEL DO &
!$OMP DEFAULT( SHARED ) &
!$OMP PRIVATE( I, J, L, N, K ) &
!$OMP SCHEDULE( DYNAMIC )
DO L = 1, State_Grid%NZ
DO J = 1, State_Grid%NY
DO I = 1, State_Grid%NX
!==============================================================
! S U L F A T E A E R O S O L S
!
! Dump hydrophilic aerosols into one array that will be passed
! to RDAER and then used for heterogeneous chemistry as well
! as photolysis rate calculations interatively.
!
! For the full-chemistry run, If LSULF=F, then we read these
! aerosol data from Mian's simulation. If LSULF=T then we use
! the online tracers.
!
! Now assume that all sulfate, ammonium, and nitrate are
! hydrophilic but sooner or later we can pass only hydrophilic
! aerosols from the thermodynamic calculations for this
! purpose. This dumping should be done before calling INITGAS,
! which converts the unit of Spc from kg/box to molec/cm3.
!
! Units of SO4_NH4_NIT are [kg/m3]. (rjp, bmy, 3/23/03)
!==============================================================
IF ( LSULF ) THEN
! If we are using the full stratospheric chemistry mechanism,
! stratospheric NH4 is ignored, stratospheric NIT is taken
! as available for NAT formation and stratospheric SO4 is
! taken as sulfuric acid
IF ( State_Met%InTroposphere(I,J,L) ) THEN
! Tropospheric - keep as normal
! now including sulfate and nitrate associated with sea-salt
! NOTE: these should be treated as having a sea-salt size
! distribution but are currently simply treated in the same
! way (size and optics) as all other sulfate aerosol (DAR
! 2013)
IF ( IS_HMS ) THEN
!%%%%% Fullchem simulations: add contribution from HMS
State_Chm%AerMass%SO4_NH4_NIT(I,J,L) = ( Spc(id_SO4)%Conc(I,J,L) &
+ Spc(id_HMS)%Conc(I,J,L) &
+ Spc(id_NH4)%Conc(I,J,L) &
+ Spc(id_NIT)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L)
State_Chm%AerMass%HMS(I,J,L) = Spc(id_HMS)%Conc(I,J,L) / AIRVOL(I,J,L)
ELSE
!%%%%% Aerosol-only simulations: Skip contribution from HMS
State_Chm%AerMass%SO4_NH4_NIT(I,J,L) = ( Spc(id_SO4)%Conc(I,J,L) &
+ Spc(id_NH4)%Conc(I,J,L) &
+ Spc(id_NIT)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L)
State_Chm%AerMass%HMS(I,J,L) = 0.0_fp
ENDIF
State_Chm%AerMass%SO4(I,J,L) = Spc(id_SO4)%Conc(I,J,L) / AIRVOL(I,J,L)
State_Chm%AerMass%NH4(I,J,L) = Spc(id_NH4)%Conc(I,J,L) / AIRVOL(I,J,L)
State_Chm%AerMass%NIT(I,J,L) = Spc(id_NIT)%Conc(I,J,L) / AIRVOL(I,J,L)
State_Chm%AerMass%SLA(I,J,L) = 0.0_fp
State_Chm%AerMass%SPA(I,J,L) = 0.0_fp
ELSE
! Tropospheric sulfate is zero in stratosphere
State_Chm%AerMass%SO4_NH4_NIT(I,J,L) = 0.0_fp
State_Chm%AerMass%SO4(I,J,L) = 0.0_fp
State_Chm%AerMass%HMS(I,J,L) = 0.0_fp ! (jmm, 06/30/18)
State_Chm%AerMass%NH4(I,J,L) = 0.0_fp
State_Chm%AerMass%NIT(I,J,L) = 0.0_fp
State_Chm%AerMass%SLA(I,J,L) = KG_STRAT_AER(I,J,L,1) / AIRVOL(I,J,L)
State_Chm%AerMass%SPA(I,J,L) = KG_STRAT_AER(I,J,L,2) / AIRVOL(I,J,L)
ENDIF
! Add error check for safe division (bmy, 4/7/15)
IF ( State_Chm%AerMass%SO4_NH4_NIT(I,J,L) > 0e+0_fp ) THEN
! Save these fractions for partitioning of optics
! until later when these may be treated independently
! Only use HMS if it is defined (for fullchem sims)
IF ( IS_HMS ) THEN
State_Chm%AerMass%FRAC_SNA(I,J,L,1) = ( ( Spc(id_SO4)%Conc(I,J,L) + &
Spc(id_HMS)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L) ) &
/ State_Chm%AerMass%SO4_NH4_NIT(I,J,L)
ELSE
State_Chm%AerMass%FRAC_SNA(I,J,L,1) = ( Spc(id_SO4)%Conc(I,J,L) / AIRVOL(I,J,L) )&
/ State_Chm%AerMass%SO4_NH4_NIT(I,J,L)
ENDIF
State_Chm%AerMass%FRAC_SNA(I,J,L,2) = ( Spc(id_NIT)%Conc(I,J,L) / AIRVOL(I,J,L) ) &
/ State_Chm%AerMass%SO4_NH4_NIT(I,J,L)
State_Chm%AerMass%FRAC_SNA(I,J,L,3) = ( Spc(id_NH4)%Conc(I,J,L) / AIRVOL(I,J,L) ) &
/ State_Chm%AerMass%SO4_NH4_NIT(I,J,L)
ELSE
! If SO4_NH4_NIT(I,J,L) is zero, then avoid a div-by-zero
! error. Set all of these to zero because the division
! cannot be done.
State_Chm%AerMass%FRAC_SNA(I,J,L,1) = 0e+0_fp
State_Chm%AerMass%FRAC_SNA(I,J,L,2) = 0e+0_fp
State_Chm%AerMass%FRAC_SNA(I,J,L,3) = 0e+0_fp
ENDIF
ENDIF
!==============================================================
! C A R B O N & 2 n d A R Y O R G A N I C A E R O S O L S
!
! Compute hydrophilic and hydrophobic BC and OC in [kg/m3]
! Also add online 2ndary organics if necessary
!==============================================================
IF ( LCARB ) THEN
! Hydrophilic BC [kg/m3]
State_Chm%AerMass%BCPI(I,J,L) = Spc(id_BCPI)%Conc(I,J,L) / AIRVOL(I,J,L)
! Hydrophobic BC [kg/m3]
State_Chm%AerMass%BCPO(I,J,L) = Spc(id_BCPO)%Conc(I,J,L) / AIRVOL(I,J,L)
! Hydrophobic OC [kg/m3]
! SOAupdate: Treat either OCPO (x2.1) or POA (x1.4)
IF ( IS_POA ) THEN
State_Chm%AerMass%OCPO(I,J,L) = ( Spc(id_POA1)%Conc(I,J,L) &
+ Spc(id_POA2)%Conc(I,J,L) ) &
* State_Chm%AerMass%OCFPOA(I,J) / AIRVOL(I,J,L)
ELSE IF ( IS_OCPO ) THEN
State_Chm%AerMass%OCPO(I,J,L) = Spc(id_OCPO)%Conc(I,J,L) &
* State_chm%AerMass%OCFOPOA(I,J) / AIRVOL(I,J,L)
ENDIF
! Hydrophilic OC [kg/m3]
IF ( IS_OCPI ) THEN
State_Chm%AerMass%OCPI(I,J,L) = Spc(id_OCPI)%Conc(I,J,L) &
* State_chm%AerMass%OCFOPOA(I,J) / AIRVOL(I,J,L)
ENDIF
! Now avoid division by zero (bmy, 4/20/04)
State_Chm%AerMass%BCPI(I,J,L) = MAX( State_Chm%AerMass%BCPI(I,J,L), 1e-35_fp )
State_Chm%AerMass%OCPI(I,J,L) = MAX( State_Chm%AerMass%OCPI(I,J,L), 1e-35_fp )
State_Chm%AerMass%BCPO(I,J,L) = MAX( State_Chm%AerMass%BCPO(I,J,L), 1e-35_fp )
State_Chm%AerMass%OCPO(I,J,L) = MAX( State_Chm%AerMass%OCPO(I,J,L), 1e-35_fp )
ENDIF ! LCARB
!===========================================================
! M I N E R A L D U S T A E R O S O L S
!
! NOTE: We can do better than this! Currently we carry 4
! dust tracers...but het. chem and fast-j use 7 dust bins
! hardwired from Ginoux.
!
! Now, I apportion the first dust tracer into four smallest
! dust bins equally in mass for het. chem and fast-j.
!
! Maybe we need to think about chaning our fast-j and het.
! chem to use just four dust bins or more flexible
! calculations depending on the number of dust bins.
! (rjp, 03/27/04)
!
! Now splitting mass into bins in fractions derived from
! Highwood et al. (2003). Data is from log-normal fit of
! PCASP measurements of Saharan dust (Solid line in Fig.4b)
! (dar, 04/25/10) [see Ridley et al., 2012, JGR]
!
! Updated for TOMAS (Jeffrey Pierce, 6/17/14)
!
! Now get dust radius from species database (bmy, 3/16/17)
!===========================================================
#ifdef TOMAS
!-----------------------------------------------------------
! TOMAS simulations only
!-----------------------------------------------------------
IF ( LDUST ) THEN
! Zero SOILDUST
SOILDUST(I,J,L,:) = 0.e0_fp
! Loop over the # of TOMAS dust bins
DO K = 1, State_Chm%nTomasBins
! Get the overall species index for species K
N = id_DUST01 + K - 1
! Effective aerosol radius [m]
REFF = State_Chm%SpcData(N)%Info%Radius
! Bin #1
IF ( REFF < 0.2e-6_fp ) THEN
SOILDUST(I,J,L,1) = SOILDUST(I,J,L,1) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #2
ELSE IF ( REFF < 0.325e-6_fp ) THEN
SOILDUST(I,J,L,2) = SOILDUST(I,J,L,2) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #3
ELSE IF ( REFF < 0.6e-6_fp ) THEN
SOILDUST(I,J,L,3) = SOILDUST(I,J,L,3) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #4
ELSE IF ( REFF < 1.15e-6_fp ) THEN
SOILDUST(I,J,L,4) = SOILDUST(I,J,L,4) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #5
ELSE IF ( REFF < 2.0e-6_fp ) THEN
SOILDUST(I,J,L,5) = SOILDUST(I,J,L,5) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #6
ELSE IF ( REFF < 3.25e-6_fp ) THEN
SOILDUST(I,J,L,6) = SOILDUST(I,J,L,6) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
! Bin #7
ELSE
SOILDUST(I,J,L,7) = SOILDUST(I,J,L,7) &
+ Spc(N)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
ENDDO
ENDIF
#else
!-----------------------------------------------------------
! Preserve original code for non-TOMAS simulations
!-----------------------------------------------------------
IF ( LDUST ) THEN
! Lump 1st dust tracer for het chem
! Now use dust size distribution scheme to improve PM2.5
! surface dust conc over western U.S. (L. Zhang, 6/25/15)
SOILDUST(I,J,L,1) = 0.007e+0_fp * Spc(id_DST1)%Conc(I,J,L) &
/ AIRVOL(I,J,L)
SOILDUST(I,J,L,2) = 0.0332e+0_fp * Spc(id_DST1)%Conc(I,J,L) &
/ AIRVOL(I,J,L)
SOILDUST(I,J,L,3) = 0.2487e+0_fp * Spc(id_DST1)%Conc(I,J,L) &
/ AIRVOL(I,J,L)
SOILDUST(I,J,L,4) = 0.7111e+0_fp * Spc(id_DST1)%Conc(I,J,L) &
/ AIRVOL(I,J,L)
! Other hetchem bins
SOILDUST(I,J,L,5) = Spc(id_DST2)%Conc(I,J,L) / AIRVOL(I,J,L)
SOILDUST(I,J,L,6) = Spc(id_DST3)%Conc(I,J,L) / AIRVOL(I,J,L)
SOILDUST(I,J,L,7) = Spc(id_DST4)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
#endif
!===========================================================
! S E A S A L T A E R O S O L S
!
! Compute accumulation & coarse mode concentration [kg/m3]
!===========================================================
IF ( LSSALT ) THEN
! Accumulation mode seasalt aerosol [kg/m3]
State_Chm%AerMass%SALA(I,J,L) = Spc(id_SALA)%Conc(I,J,L) / AIRVOL(I,J,L)
! Coarse mode seasalt aerosol [kg/m3]
State_Chm%AerMass%SALC(I,J,L) = Spc(id_SALC)%Conc(I,J,L) / AIRVOL(I,J,L)
! Fine mode Cl-/sulfate interal mixed [kg/m3]
State_Chm%AerMass%ACL(I,J,L) = ( Spc(id_SALACL)%Conc(I,J,L) + &
Spc(id_SALA)%Conc(I,J,L)*0.45e0_fp)/AIRVOL(I,J,L)
! Avoid division by zero
State_Chm%AerMass%SALA(I,J,L) = MAX( State_Chm%AerMass%SALA(I,J,L), 1e-35_fp )
State_Chm%AerMass%SALC(I,J,L) = MAX( State_Chm%AerMass%SALC(I,J,L), 1e-35_fp )
State_Chm%AerMass%ACL(I,J,L) = MAX( State_Chm%AerMass%ACL(I,J,L), 1e-35_fp )
ENDIF
!===========================================================
! S E C O N D A R Y O R G A N I C A E R O S O L S
!
! Compute SOA concentration [kg/m3]
!===========================================================
!--------------------------------------------------------
! Simple SOA scheme
!--------------------------------------------------------
IF ( Is_SimpleSOA ) THEN
! Simple SOA [kg/m3]
State_Chm%AerMass%SOAS(I,J,L) = Spc(id_SOAS)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
!--------------------------------------------------------
! Complex SOA scheme
!--------------------------------------------------------
IF ( Is_ComplexSOA ) THEN
! TSOA (terpene SOA) [kg/m3]
IF ( IS_TSOA ) THEN
State_Chm%AerMass%TSOA(I,J,L) = ( Spc(id_TSOA1)%Conc(I,J,L) &
+ Spc(id_TSOA2)%Conc(I,J,L) &
+ Spc(id_TSOA3)%Conc(I,J,L) &
+ Spc(id_TSOA0)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L)
ENDIF
! ASOA (benz, tolu, xyle, + NAP/IVOC SOA) [kg/m3]
IF ( IS_ASOA ) THEN
State_Chm%AerMass%ASOA(I,J,L) = ( Spc(id_ASOAN)%Conc(I,J,L) &
+ Spc(id_ASOA1)%Conc(I,J,L) &
+ Spc(id_ASOA2)%Conc(I,J,L) &
+ Spc(id_ASOA3)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L)
ENDIF
! OPOA [kg/m3]
IF ( IS_OPOA ) THEN
State_Chm%AerMass%OPOA(I,J,L) = ( Spc(id_OPOA1)%Conc(I,J,L) &
+ Spc(id_OPOA2)%Conc(I,J,L) ) &
* State_chm%AerMass%OCFOPOA(I,J) / AIRVOL(I,J,L)
ENDIF
ENDIF
!-------------------------------------------------------
! Mass loading of isoprene SOA (ISOAAQ) [kg/m3]
!-------------------------------------------------------
! Glyoxal
IF ( id_SOAGX > 0 ) THEN
State_Chm%AerMass%ISOAAQ(I,J,L) = Spc(id_SOAGX)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
! IEPOX
IF ( id_SOAIE > 0 ) THEN
State_Chm%AerMass%ISOAAQ(I,J,L) = State_Chm%AerMass%ISOAAQ(I,J,L) &
+ Spc(id_SOAIE)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
!-----------------------------------------------------------------------
! Exclude INDIOL from AOD and aerosol mass calculations. This results in
! lost mass. As noted in Fisher et al. (2016, ACP), this is a source of
! uncertainty and would benefit from an update when more information
! about this process becomes available. (eam, jaf, mps, 3/5/18)
!! SOA from alkyl nitrates (some contribution
!! from non-isoprene sources)
!IF ( id_INDIOL > 0 ) THEN
! State_Chm%AerMass%ISOAAQ(I,J,L) = State_Chm%AerMass%ISOAAQ(I,J,L) + Spc(id_INDIOL)%Conc(I,J,L) / AIRVOL(I,J,L)
!ENDIF
!-----------------------------------------------------------------------
! SOA from ISOPOOH oxidation product
IF ( id_LVOCOA > 0 ) THEN
State_Chm%AerMass%ISOAAQ(I,J,L) = State_Chm%AerMass%ISOAAQ(I,J,L) &
+ Spc(id_LVOCOA)%Conc(I,J,L) / AIRVOL(I,J,L)
ENDIF
!-------------------------------------------------------
! Hydrophilic primary OC plus SOA [kg/m3].
!
! We need to multiply by OCF to account for the mass of
! other components which are attached to the OC aerosol.
! (rjp, bmy, 7/15/04)
!
! SOAupdate: use 2.1 (OCFOPOA) (hotp 7/21/10)
!
! sfarina - add SOA-Simplified to primary OC.
! - IDTSOAS is already mass basis, so only apply
! OCFOPOA to IDTOCPI
!
! SOAupdate: Update traditional SOA (hotp 7/21/10)
! for new mtp + isop + lumparomivoc (hotp 5/20/10)
!
! %%% IMPORTANT %%%
! Note that if complex SOA is used then PM2.5 includes all
! the SOA formed in both the Marais et al. and Pye et al.
! schemes and may include some double-counting of isoprene SOA.
! (Aerosol WG)
!-------------------------------------------------------
! Use simple SOA by default over complex SOA in calculations
IF ( Is_SimpleSOA ) THEN
State_Chm%AerMass%OCPISOA(I,J,L) = ( Spc(id_OCPI)%Conc(I,J,L) * State_chm%AerMass%OCFOPOA(I,J) + &
Spc(id_SOAS)%Conc(I,J,L) ) / AIRVOL(I,J,L)
ELSEIF ( Is_ComplexSOA ) THEN
State_Chm%AerMass%OCPISOA(I,J,L) = ( Spc(id_TSOA1)%Conc(I,J,L) &
+ Spc(id_TSOA2)%Conc(I,J,L) &
+ Spc(id_TSOA3)%Conc(I,J,L) &
+ Spc(id_TSOA0)%Conc(I,J,L) &
+ Spc(id_ASOAN)%Conc(I,J,L) &
+ Spc(id_ASOA1)%Conc(I,J,L) &
+ Spc(id_ASOA2)%Conc(I,J,L) &
+ Spc(id_ASOA3)%Conc(I,J,L) ) &
/ AIRVOL(I,J,L)
IF ( IS_OPOA ) THEN ! hotp 7/28/10
State_Chm%AerMass%OCPISOA(I,J,L) = State_Chm%AerMass%OCPISOA(I,J,L) + &
( Spc(id_OPOA1)%Conc(I,J,L) &
+ Spc(id_OPOA2)%Conc(I,J,L) ) &
* State_chm%AerMass%OCFOPOA(I,J) / AIRVOL(I,J,L)
ENDIF
IF ( IS_OCPI ) THEN ! hotp 7/28/10
State_Chm%AerMass%OCPISOA(I,J,L) = State_Chm%AerMass%OCPISOA(I,J,L) + Spc(id_OCPI)%Conc(I,J,L) &
* State_chm%AerMass%OCFOPOA(I,J) / AIRVOL(I,J,L)
ENDIF
ENDIF
! Add mechanistic isoprene OA (eam, 08/2015)
! Skip adding this for Simple SOA (jaf, clh, bmy, 5/17/18)
IF ( Is_ComplexSOA ) THEN
State_Chm%AerMass%OCPISOA(I,J,L) = State_Chm%AerMass%OCPISOA(I,J,L) + State_Chm%AerMass%ISOAAQ(I,J,L)
ENDIF
! Now avoid division by zero (bmy, 4/20/04)
State_Chm%AerMass%OCPISOA(I,J,L) = MAX( State_Chm%AerMass%OCPISOA(I,J,L), 1e-35_fp )
!===========================================================
! SOAGX [kg/m3]
!===========================================================
IF ( IS_SOAGX ) THEN
State_Chm%AerMass%SOAGX(I,J,L) = Spc(id_SOAGX)%Conc(I,J,L) * OCFG / AIRVOL(I,J,L)
ENDIF
!==============================================================
! P A R T I C U L A T E M A T T E R
!
! See this GEOS-Chem wiki page for the most up-to-date
! definitions of PM2.5 and PM10 used in GEOS-Chem:
!
! http://wiki.geos.chem.org/Particulate_Matter_in_GEOS-Chem
!==============================================================
! Particulate matter < 2.5um [kg/m3]
State_Chm%AerMass%PM25(I,J,L) = State_Chm%AerMass%NH4(I,J,L) * SIA_GROWTH + &
State_Chm%AerMass%NIT(I,J,L) * SIA_GROWTH + &
State_Chm%AerMass%SO4(I,J,L) * SIA_GROWTH + &
State_Chm%AerMass%HMS(I,J,L) * SIA_GROWTH + & ! (jmm, 06/30/18)
State_Chm%AerMass%BCPI(I,J,L) + &
State_Chm%AerMass%BCPO(I,J,L) + &
State_Chm%AerMass%OCPO(I,J,L) + &
State_Chm%AerMass%OCPI(I,J,L) * ORG_GROWTH + &
State_Chm%AerMass%SALA(I,J,L) * SSA_GROWTH + &
SOILDUST(I,J,L,1) + &
SOILDUST(I,J,L,2) + &
SOILDUST(I,J,L,3) + &
SOILDUST(I,J,L,4) + &
SOILDUST(I,J,L,5) * 0.3_fp ! + 30% of DST2
! Particulate matter < 10um [kg/m3]
State_Chm%AerMass%PM10(I,J,L) = State_Chm%AerMass%PM25(I,J,L) + & ! PM2.5
SOILDUST(I,J,L,5) * 0.7_fp + & ! + 70% of DST2
SOILDUST(I,J,L,6) + & ! + 100% of DST3
SOILDUST(I,J,L,7) * 0.9_fp + & ! + 90% of DST4
State_Chm%AerMass%SALC(I,J,L) * SSA_GROWTH
! Include either simple SOA (default) or Complex SOA in
! PM2.5 calculation. In simulations where both Simple SOA and
! Complex SOA species are carried (i.e. "benchmark"), then
! only the Simple SOA will be added to PM2.5 and PM10, in order
! to avoid double-counting. (bmy, 03 Nov 2021)
IF ( Is_SimpleSOA ) THEN
State_Chm%AerMass%PM25(I,J,L) = State_Chm%AerMass%PM25(I,J,L) + ( State_Chm%AerMass%SOAS(I,J,L) * ORG_GROWTH )
State_Chm%AerMass%PM10(I,J,L) = State_Chm%AerMass%PM10(I,J,L) + ( State_Chm%AerMass%SOAS(I,J,L) * ORG_GROWTH )
ELSE IF ( Is_ComplexSOA ) THEN
State_Chm%AerMass%PM25(I,J,L) = State_Chm%AerMass%PM25(I,J,L) + &
State_Chm%AerMass%TSOA(I,J,L) * ORG_GROWTH + &
State_Chm%AerMass%ASOA(I,J,L) * ORG_GROWTH + &
State_Chm%AerMass%ISOAAQ(I,J,L) * ORG_GROWTH ! Includes SOAGX
State_Chm%AerMass%PM10(I,J,L) = State_Chm%AerMass%PM10(I,J,L) + &
State_Chm%AerMass%TSOA(I,J,L) * ORG_GROWTH + &
State_Chm%AerMass%ASOA(I,J,L) * ORG_GROWTH + &
State_Chm%AerMass%ISOAAQ(I,J,L) * ORG_GROWTH ! Includes SOAGX
! Need to add OPOA to PM2.5 for complexSOA_SVPOA simulations
! -- Maggie Marvin (15 Jul 2020)
IF ( Is_OPOA ) THEN
State_Chm%AerMass%PM25(I,J,L) = State_Chm%AerMass%PM25(I,J,L) + ( State_Chm%AerMass%OPOA(I,J,L) * ORG_GROWTH )
State_Chm%AerMass%PM10(I,J,L) = State_Chm%AerMass%PM10(I,J,L) + ( State_Chm%AerMass%OPOA(I,J,L) * ORG_GROWTH )
ENDIF
ENDIF
! Apply STP correction factor based on ideal gas law
State_Chm%AerMass%PM25(I,J,L) = State_Chm%AerMass%PM25(I,J,L) * ( 1013.25_fp / PMID(I,J,L) ) * &
( T(I,J,L) / 298.0_fp )
State_Chm%AerMass%PM10(I,J,L) = State_Chm%AerMass%PM10(I,J,L) * ( 1013.25_fp / PMID(I,J,L) ) * &
( T(I,J,L) / 298.0_fp )
#ifdef MODEL_GEOS
! PM2.5 sulfates
IF ( State_Diag%Archive_PM25su ) THEN
State_Diag%PM25su(I,J,L) = ( State_Chm%AerMass%SO4(I,J,L) * SIA_GROWTH ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 nitrates
IF ( State_Diag%Archive_PM25ni ) THEN
State_Diag%PM25ni(I,J,L) = ( State_Chm%AerMass%NH4(I,J,L) * SIA_GROWTH &
+ State_Chm%AerMass%NIT(I,J,L) * SIA_GROWTH ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 BC
IF ( State_Diag%Archive_PM25bc ) THEN
State_Diag%PM25bc(I,J,L) = ( State_Chm%AerMass%BCPI(I,J,L) + State_Chm%AerMass%BCPO(I,J,L) ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 OC
IF ( State_Diag%Archive_PM25oc ) THEN
State_Diag%PM25oc(I,J,L) = ( State_Chm%AerMass%OCPO(I,J,L) &
+ State_Chm%AerMass%OCPI(I,J,L) * ORG_GROWTH ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 dust
IF ( State_Diag%Archive_PM25du ) THEN
State_Diag%PM25du(I,J,L) = ( SOILDUST(I,J,L,1) &
+ SOILDUST(I,J,L,2) &
+ SOILDUST(I,J,L,3) &
+ SOILDUST(I,J,L,4) &
+ SOILDUST(I,J,L,5) * 0.38 ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 sea salt
IF ( State_Diag%Archive_PM25ss ) THEN
State_Diag%PM25ss(I,J,L) = ( State_Chm%AerMass%SALA(I,J,L) * SSA_GROWTH ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
! PM2.5 SOA
IF ( State_Diag%Archive_PM25soa ) THEN
State_Diag%PM25soa(I,J,L) = ( State_Chm%AerMass%TSOA(I,J,L) * ORG_GROWTH &
+ State_Chm%AerMass%ASOA(I,J,L) * ORG_GROWTH &
+ State_Chm%AerMass%SOAS(I,J,L) * ORG_GROWTH &
+ State_Chm%AerMass%ISOAAQ(I,J,L) * ORG_GROWTH ) &
* ( 1013.25_fp / PMID(I,J,L) ) &
* ( T(I,J,L) / 298.0_fp ) &
* 1.0e+9_fp
ENDIF
#endif
ENDDO
ENDDO
ENDDO
!$OMP END PARALLEL DO
! Convert species back to original unit
CALL Convert_Spc_Units( &
Input_Opt = Input_Opt, &
State_Chm = State_Chm, &
State_Grid = State_Grid, &
State_Met = State_Met, &
outUnit = origUnit, &
RC = RC )
IF ( RC /= GC_SUCCESS ) THEN
CALL GC_Error('Unit conversion error', RC, &
'End of AEROSOL_CONC in aerosol_mod.F90')
RETURN
ENDIF
! Free pointers
Spc => NULL()
REAA => NULL()
AIRVOL => NULL()
PMID => NULL()
T => NULL()
SOILDUST => NULL()
END SUBROUTINE AEROSOL_CONC
!EOC
!------------------------------------------------------------------------------
! GEOS-Chem Global Chemical Transport Model !
!------------------------------------------------------------------------------
!BOP
!
! !IROUTINE: rdaer
!
! !DESCRIPTION: Subroutine RDAER reads global aerosol concentrations as
! determined by Mian Chin. Calculates optical depth at each level for
! "set\_prof". Also calculates surface area for heterogeneous chemistry. It
! uses aerosol parameters in FAST-J input file "jv\_spec.dat" for these
! calculations. (rvm, rjp, tdf, bmy, 11/04/01, 7/20/04)
!\\
!\\
! !INTERFACE:
!
SUBROUTINE RDAER( Input_Opt, State_Chm, State_Diag, State_Grid, State_Met, &
RC, MONTH, YEAR, ODSWITCH )
!
! !USES:
!
USE CMN_SIZE_Mod, ONLY : NAER, NRH, NDUST, NRHAER, NSTRATAER
USE ErrCode_Mod
USE ERROR_MOD, ONLY : ERROR_STOP, Safe_Div
USE Input_Opt_Mod, ONLY : OptInput
USE PhysConstants, ONLY : CONSVAP
USE State_Chm_Mod, ONLY : ChmState
USE State_Diag_Mod, ONLY : DgnState
USE State_Grid_Mod, ONLY : GrdState
USE State_Met_Mod, ONLY : MetState
USE TIME_MOD, ONLY : ITS_A_NEW_MONTH
USE TIME_MOD, ONLY : SYSTEM_TIMESTAMP
USE UCX_MOD, ONLY : GET_STRAT_OPT
USE Species_Mod, ONLY : Species
IMPLICIT NONE
!
! !INPUT PARAMETERS:
!
TYPE(OptInput), INTENT(IN) :: Input_Opt ! Input Options object
TYPE(GrdState), INTENT(IN) :: State_Grid ! Grid State object
TYPE(MetState), INTENT(IN) :: State_Met ! Meteorology State object
INTEGER, OPTIONAL :: MONTH ! # of current month