forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_tf_alt.py
399 lines (305 loc) · 10.8 KB
/
dqn_tf_alt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python
# https://www.udemy.com/deep-reinforcement-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import copy
import gym
import os
import sys
import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from gym import wrappers
from datetime import datetime
from scipy.misc import imresize
##### testing only
# MAX_EXPERIENCES = 10000
# MIN_EXPERIENCES = 1000
MAX_EXPERIENCES = 500000
MIN_EXPERIENCES = 50000
TARGET_UPDATE_PERIOD = 10000
IM_SIZE = 80
K = 4 #env.action_space.n
def downsample_image(A):
B = A[31:195] # select the important parts of the image
B = B.mean(axis=2) # convert to grayscale
# downsample image
# changing aspect ratio doesn't significantly distort the image
# nearest neighbor interpolation produces a much sharper image
# than default bilinear
B = imresize(B, size=(IM_SIZE, IM_SIZE), interp='nearest')
return B
def update_state(state, obs):
obs_small = downsample_image(obs)
return np.append(state[1:], np.expand_dims(obs_small, 0), axis=0)
class ConvLayer:
def __init__(self, mi, mo, filtersz=5, stride=2, f=tf.nn.relu):
# mi = input feature map size
# mo = output feature map size
self.W = tf.Variable(tf.random_normal(shape=(filtersz, filtersz, mi, mo)))
b0 = np.zeros(mo, dtype=np.float32)
self.b = tf.Variable(b0)
self.f = f
self.stride = stride
self.params = [self.W, self.b]
def forward(self, X):
conv_out = tf.nn.conv2d(X, self.W, strides=[1, self.stride, self.stride, 1], padding='SAME')
conv_out = tf.nn.bias_add(conv_out, self.b)
return self.f(conv_out)
class HiddenLayer:
def __init__(self, M1, M2, f=tf.nn.relu, use_bias=True):
# print("M1:", M1)
self.W = tf.Variable(tf.random_normal(shape=(M1, M2)))
self.params = [self.W]
self.use_bias = use_bias
if use_bias:
self.b = tf.Variable(np.zeros(M2).astype(np.float32))
self.params.append(self.b)
self.f = f
def forward(self, X):
if self.use_bias:
a = tf.matmul(X, self.W) + self.b
else:
a = tf.matmul(X, self.W)
return self.f(a)
class DQN:
# def __init__(self, K, conv_layer_sizes, hidden_layer_sizes, gamma, max_experiences=500000, min_experiences=50000, batch_sz=32):
def __init__(self, K, conv_layer_sizes, hidden_layer_sizes, gamma):
self.K = K
# create the graph
self.conv_layers = []
num_input_filters = 4 # number of filters / color channels
final_height = IM_SIZE
final_width = IM_SIZE
for num_output_filters, filtersz, stride in conv_layer_sizes:
layer = ConvLayer(num_input_filters, num_output_filters, filtersz, stride)
self.conv_layers.append(layer)
num_input_filters = num_output_filters
# calculate final output size for input into fully connected layers
old_height = final_height
new_height = int(np.ceil(old_height / stride))
print("new_height (%s) = old_height (%s) / stride (%s)" % (new_height, old_height, stride))
final_height = int(np.ceil(final_height / stride))
final_width = int(np.ceil(final_width / stride))
self.layers = []
flattened_ouput_size = final_height * final_width * num_input_filters
M1 = flattened_ouput_size
for M2 in hidden_layer_sizes:
layer = HiddenLayer(M1, M2)
self.layers.append(layer)
M1 = M2
# final layer
layer = HiddenLayer(M1, K, lambda x: x)
self.layers.append(layer)
# collect params for copy
self.params = []
for layer in (self.conv_layers + self.layers):
self.params += layer.params
# inputs and targets
self.X = tf.placeholder(tf.float32, shape=(None, 4, IM_SIZE, IM_SIZE), name='X')
# tensorflow convolution needs the order to be:
# (num_samples, height, width, "color")
# so we need to tranpose later
self.G = tf.placeholder(tf.float32, shape=(None,), name='G')
self.actions = tf.placeholder(tf.int32, shape=(None,), name='actions')
# calculate output and cost
Z = self.X / 255.0
Z = tf.transpose(Z, [0, 2, 3, 1]) # TF wants the "color" channel to be last
for layer in self.conv_layers:
Z = layer.forward(Z)
Z = tf.reshape(Z, [-1, flattened_ouput_size])
for layer in self.layers:
Z = layer.forward(Z)
Y_hat = Z
self.predict_op = Y_hat
# selected_action_values = tf.reduce_sum(
# Y_hat * tf.one_hot(self.actions, K),
# reduction_indices=[1]
# )
# we would like to do this, but it doesn't work in TF:
# selected_action_values = Y_hat[tf.range(batch_sz), self.actions]
# instead we do:
indices = tf.range(batch_sz) * tf.shape(Y_hat)[1] + self.actions
selected_action_values = tf.gather(
tf.reshape(Y_hat, [-1]), # flatten
indices
)
cost = tf.reduce_mean(tf.square(self.G - selected_action_values))
self.cost = cost
# self.train_op = tf.train.AdamOptimizer(10e-3).minimize(cost)
# self.train_op = tf.train.AdagradOptimizer(10e-3).minimize(cost)
self.train_op = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6).minimize(cost)
# self.train_op = tf.train.MomentumOptimizer(10e-4, momentum=0.9).minimize(cost)
# self.train_op = tf.train.GradientDescentOptimizer(10e-5).minimize(cost)
def set_session(self, session):
self.session = session
def copy_from(self, other):
# collect all the ops
ops = []
my_params = self.params
other_params = other.params
for p, q in zip(my_params, other_params):
actual = self.session.run(q)
op = p.assign(actual)
ops.append(op)
# now run them all
self.session.run(ops)
def predict(self, X):
return self.session.run(self.predict_op, feed_dict={self.X: X})
def update(self, states, actions, targets):
c, _ = self.session.run(
[self.cost, self.train_op],
feed_dict={
self.X: states,
self.G: targets,
self.actions: actions
}
)
return c
def sample_action(self, x, eps):
if np.random.random() < eps:
return np.random.choice(self.K)
else:
return np.argmax(self.predict([x])[0])
def learn(model, target_model, experience_replay_buffer, gamma, batch_size):
# Sample experiences
samples = random.sample(experience_replay_buffer, batch_size)
states, actions, rewards, next_states, dones = map(np.array, zip(*samples))
# Calculate targets
next_Qs = target_model.predict(next_states)
next_Q = np.amax(next_Qs, axis=1)
targets = rewards + np.invert(dones).astype(np.float32) * gamma * next_Q
# Update model
loss = model.update(states, actions, targets)
return loss
def play_one(
env,
total_t,
experience_replay_buffer,
model,
target_model,
gamma,
batch_size,
epsilon,
epsilon_change,
epsilon_min):
t0 = datetime.now()
# Reset the environment
obs = env.reset()
obs_small = downsample_image(obs)
state = np.stack([obs_small] * 4, axis=0)
assert(state.shape == (4, 80, 80))
loss = None
total_time_training = 0
num_steps_in_episode = 0
episode_reward = 0
done = False
while not done:
# Update target network
if total_t % TARGET_UPDATE_PERIOD == 0:
target_model.copy_from(model)
print("Copied model parameters to target network. total_t = %s, period = %s" % (total_t, TARGET_UPDATE_PERIOD))
# Take action
action = model.sample_action(state, epsilon)
obs, reward, done, _ = env.step(action)
obs_small = downsample_image(obs)
next_state = np.append(state[1:], np.expand_dims(obs_small, 0), axis=0)
# assert(state.shape == (4, 80, 80))
episode_reward += reward
# Remove oldest experience if replay buffer is full
if len(experience_replay_buffer) == MAX_EXPERIENCES:
experience_replay_buffer.pop(0)
# Save the latest experience
experience_replay_buffer.append((state, action, reward, next_state, done))
# Train the model, keep track of time
t0_2 = datetime.now()
loss = learn(model, target_model, experience_replay_buffer, gamma, batch_size)
dt = datetime.now() - t0_2
total_time_training += dt.total_seconds()
num_steps_in_episode += 1
state = next_state
total_t += 1
epsilon = max(epsilon - epsilon_change, epsilon_min)
return total_t, episode_reward, (datetime.now() - t0), num_steps_in_episode, total_time_training/num_steps_in_episode, epsilon
if __name__ == '__main__':
# hyperparams and initialize stuff
conv_layer_sizes = [(32, 8, 4), (64, 4, 2), (64, 3, 1)]
hidden_layer_sizes = [512]
gamma = 0.99
batch_sz = 32
num_episodes = 10000
total_t = 0
experience_replay_buffer = []
episode_rewards = np.zeros(num_episodes)
# epsilon
# decays linearly until 0.1
epsilon = 1.0
epsilon_min = 0.1
epsilon_change = (epsilon - epsilon_min) / 500000
# Create environment
env = gym.envs.make("Breakout-v0")
# Create models
model = DQN(
K=K,
conv_layer_sizes=conv_layer_sizes,
hidden_layer_sizes=hidden_layer_sizes,
gamma=gamma,
# scope="model"
)
target_model = DQN(
K=K,
conv_layer_sizes=conv_layer_sizes,
hidden_layer_sizes=hidden_layer_sizes,
gamma=gamma,
# scope="target_model"
)
with tf.Session() as sess:
model.set_session(sess)
target_model.set_session(sess)
sess.run(tf.global_variables_initializer())
print("Populating experience replay buffer...")
obs = env.reset()
obs_small = downsample_image(obs)
state = np.stack([obs_small] * 4, axis=0)
# assert(state.shape == (4, 80, 80))
for i in range(MIN_EXPERIENCES):
action = np.random.choice(K)
obs, reward, done, _ = env.step(action)
next_state = update_state(state, obs)
# assert(state.shape == (4, 80, 80))
experience_replay_buffer.append((state, action, reward, next_state, done))
if done:
obs = env.reset()
obs_small = downsample_image(obs)
state = np.stack([obs_small] * 4, axis=0)
# assert(state.shape == (4, 80, 80))
else:
state = next_state
# Play a number of episodes and learn!
for i in range(num_episodes):
total_t, episode_reward, duration, num_steps_in_episode, time_per_step, epsilon = play_one(
env,
total_t,
experience_replay_buffer,
model,
target_model,
gamma,
batch_sz,
epsilon,
epsilon_change,
epsilon_min,
)
episode_rewards[i] = episode_reward
last_100_avg = episode_rewards[max(0, i - 100):i + 1].mean()
print("Episode:", i,
"Duration:", duration,
"Num steps:", num_steps_in_episode,
"Reward:", episode_reward,
"Training time per step:", "%.3f" % time_per_step,
"Avg Reward (Last 100):", "%.3f" % last_100_avg,
"Epsilon:", "%.3f" % epsilon
)
sys.stdout.flush()