forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquic_framer.cc
2223 lines (1952 loc) · 74.3 KB
/
quic_framer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_framer.h"
#include "base/containers/hash_tables.h"
#include "base/stl_util.h"
#include "net/quic/crypto/crypto_framer.h"
#include "net/quic/crypto/crypto_handshake_message.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/quic_data_reader.h"
#include "net/quic/quic_data_writer.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_socket_address_coder.h"
using base::StringPiece;
using std::map;
using std::max;
using std::min;
using std::numeric_limits;
using std::string;
namespace net {
namespace {
// Mask to select the lowest 48 bits of a sequence number.
const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
GG_UINT64_C(0x0000FFFFFFFFFFFF);
const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
GG_UINT64_C(0x00000000FFFFFFFF);
const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
GG_UINT64_C(0x000000000000FFFF);
const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
GG_UINT64_C(0x00000000000000FF);
const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
// Number of bits the sequence number length bits are shifted from the right
// edge of the public header.
const uint8 kPublicHeaderSequenceNumberShift = 4;
// New Frame Types, QUIC v. >= 10:
// There are two interpretations for the Frame Type byte in the QUIC protocol,
// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
//
// Regular Frame Types use the Frame Type byte simply. Currently defined
// Regular Frame Types are:
// Padding : 0b 00000000 (0x00)
// ResetStream : 0b 00000001 (0x01)
// ConnectionClose : 0b 00000010 (0x02)
// GoAway : 0b 00000011 (0x03)
// WindowUpdate : 0b 00000100 (0x04)
// Blocked : 0b 00000101 (0x05)
//
// Special Frame Types encode both a Frame Type and corresponding flags
// all in the Frame Type byte. Currently defined Special Frame Types are:
// Stream : 0b 1xxxxxxx
// Ack : 0b 01xxxxxx
//
// Semantics of the flag bits above (the x bits) depends on the frame type.
// Masks to determine if the frame type is a special use
// and for specific special frame types.
const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
const uint8 kQuicFrameTypeStreamMask = 0x80;
const uint8 kQuicFrameTypeAckMask = 0x40;
// Stream frame relative shifts and masks for interpreting the stream flags.
// StreamID may be 1, 2, 3, or 4 bytes.
const uint8 kQuicStreamIdShift = 2;
const uint8 kQuicStreamIDLengthMask = 0x03;
// Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
const uint8 kQuicStreamOffsetShift = 3;
const uint8 kQuicStreamOffsetMask = 0x07;
// Data length may be 0 or 2 bytes.
const uint8 kQuicStreamDataLengthShift = 1;
const uint8 kQuicStreamDataLengthMask = 0x01;
// Fin bit may be set or not.
const uint8 kQuicStreamFinShift = 1;
const uint8 kQuicStreamFinMask = 0x01;
// Sequence number size shift used in AckFrames.
const uint8 kQuicSequenceNumberLengthShift = 2;
// Acks may be truncated.
const uint8 kQuicAckTruncatedShift = 1;
const uint8 kQuicAckTruncatedMask = 0x01;
// Acks may not have any nacks.
const uint8 kQuicHasNacksMask = 0x01;
// Returns the absolute value of the difference between |a| and |b|.
QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
QuicPacketSequenceNumber b) {
// Since these are unsigned numbers, we can't just return abs(a - b)
if (a < b) {
return b - a;
}
return a - b;
}
QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
QuicPacketSequenceNumber a,
QuicPacketSequenceNumber b) {
return (Delta(target, a) < Delta(target, b)) ? a : b;
}
QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
case PACKET_FLAGS_6BYTE_SEQUENCE:
return PACKET_6BYTE_SEQUENCE_NUMBER;
case PACKET_FLAGS_4BYTE_SEQUENCE:
return PACKET_4BYTE_SEQUENCE_NUMBER;
case PACKET_FLAGS_2BYTE_SEQUENCE:
return PACKET_2BYTE_SEQUENCE_NUMBER;
case PACKET_FLAGS_1BYTE_SEQUENCE:
return PACKET_1BYTE_SEQUENCE_NUMBER;
default:
LOG(DFATAL) << "Unreachable case statement.";
return PACKET_6BYTE_SEQUENCE_NUMBER;
}
}
} // namespace
bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
const QuicWindowUpdateFrame& frame) {
return true;
}
bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
return true;
}
QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
QuicTime creation_time,
bool is_server)
: visitor_(nullptr),
fec_builder_(nullptr),
entropy_calculator_(nullptr),
error_(QUIC_NO_ERROR),
last_sequence_number_(0),
last_serialized_connection_id_(0),
supported_versions_(supported_versions),
decrypter_level_(ENCRYPTION_NONE),
alternative_decrypter_level_(ENCRYPTION_NONE),
alternative_decrypter_latch_(false),
is_server_(is_server),
validate_flags_(true),
creation_time_(creation_time),
last_timestamp_(QuicTime::Delta::Zero()) {
DCHECK(!supported_versions.empty());
quic_version_ = supported_versions_[0];
decrypter_.reset(QuicDecrypter::Create(kNULL));
encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
}
QuicFramer::~QuicFramer() {}
// static
size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
QuicStreamOffset offset,
bool last_frame_in_packet,
InFecGroup is_in_fec_group) {
bool no_stream_frame_length = last_frame_in_packet &&
is_in_fec_group == NOT_IN_FEC_GROUP;
return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
GetStreamOffsetSize(offset) +
(no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
}
// static
size_t QuicFramer::GetMinAckFrameSize(
QuicSequenceNumberLength sequence_number_length,
QuicSequenceNumberLength largest_observed_length) {
return kQuicFrameTypeSize + kQuicEntropyHashSize +
largest_observed_length + kQuicDeltaTimeLargestObservedSize;
}
// static
size_t QuicFramer::GetStopWaitingFrameSize(
QuicSequenceNumberLength sequence_number_length) {
return kQuicFrameTypeSize + kQuicEntropyHashSize +
sequence_number_length;
}
// static
size_t QuicFramer::GetMinRstStreamFrameSize() {
return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
kQuicErrorDetailsLengthSize;
}
// static
size_t QuicFramer::GetMinConnectionCloseFrameSize() {
return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
}
// static
size_t QuicFramer::GetMinGoAwayFrameSize() {
return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
kQuicMaxStreamIdSize;
}
// static
size_t QuicFramer::GetWindowUpdateFrameSize() {
return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
}
// static
size_t QuicFramer::GetBlockedFrameSize() {
return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
}
// static
size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
// Sizes are 1 through 4 bytes.
for (int i = 1; i <= 4; ++i) {
stream_id >>= 8;
if (stream_id == 0) {
return i;
}
}
LOG(DFATAL) << "Failed to determine StreamIDSize.";
return 4;
}
// static
size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
// 0 is a special case.
if (offset == 0) {
return 0;
}
// 2 through 8 are the remaining sizes.
offset >>= 8;
for (int i = 2; i <= 8; ++i) {
offset >>= 8;
if (offset == 0) {
return i;
}
}
LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
return 8;
}
// static
size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
number_versions * kQuicVersionSize;
}
bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
for (size_t i = 0; i < supported_versions_.size(); ++i) {
if (version == supported_versions_[i]) {
return true;
}
}
return false;
}
size_t QuicFramer::GetSerializedFrameLength(
const QuicFrame& frame,
size_t free_bytes,
bool first_frame,
bool last_frame,
InFecGroup is_in_fec_group,
QuicSequenceNumberLength sequence_number_length) {
if (frame.type == PADDING_FRAME) {
// PADDING implies end of packet.
return free_bytes;
}
size_t frame_len =
ComputeFrameLength(frame, last_frame, is_in_fec_group,
sequence_number_length);
if (frame_len <= free_bytes) {
// Frame fits within packet. Note that acks may be truncated.
return frame_len;
}
// Only truncate the first frame in a packet, so if subsequent ones go
// over, stop including more frames.
if (!first_frame) {
return 0;
}
bool can_truncate = frame.type == ACK_FRAME &&
free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
PACKET_6BYTE_SEQUENCE_NUMBER);
if (can_truncate) {
// Truncate the frame so the packet will not exceed kMaxPacketSize.
// Note that we may not use every byte of the writer in this case.
DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
return free_bytes;
}
if (!FLAGS_quic_allow_oversized_packets_for_test) {
return 0;
}
LOG(DFATAL) << "Packet size too small to fit frame.";
return frame_len;
}
QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
QuicFramer::AckFrameInfo::~AckFrameInfo() {}
// static
QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
const QuicPacketHeader& header) {
return header.entropy_flag << (header.packet_sequence_number % 8);
}
QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
const QuicFrames& frames,
char* buffer,
size_t packet_length) {
QuicDataWriter writer(packet_length, buffer);
if (!AppendPacketHeader(header, &writer)) {
LOG(DFATAL) << "AppendPacketHeader failed";
return nullptr;
}
size_t i = 0;
for (const QuicFrame& frame : frames) {
// Determine if we should write stream frame length in header.
const bool no_stream_frame_length =
(header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
(i == frames.size() - 1);
if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
LOG(DFATAL) << "AppendTypeByte failed";
return nullptr;
}
switch (frame.type) {
case PADDING_FRAME:
writer.WritePadding();
break;
case STREAM_FRAME:
if (!AppendStreamFrame(
*frame.stream_frame, no_stream_frame_length, &writer)) {
LOG(DFATAL) << "AppendStreamFrame failed";
return nullptr;
}
break;
case ACK_FRAME:
if (!AppendAckFrameAndTypeByte(
header, *frame.ack_frame, &writer)) {
LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
return nullptr;
}
break;
case STOP_WAITING_FRAME:
if (!AppendStopWaitingFrame(
header, *frame.stop_waiting_frame, &writer)) {
LOG(DFATAL) << "AppendStopWaitingFrame failed";
return nullptr;
}
break;
case PING_FRAME:
// Ping has no payload.
break;
case RST_STREAM_FRAME:
if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
LOG(DFATAL) << "AppendRstStreamFrame failed";
return nullptr;
}
break;
case CONNECTION_CLOSE_FRAME:
if (!AppendConnectionCloseFrame(
*frame.connection_close_frame, &writer)) {
LOG(DFATAL) << "AppendConnectionCloseFrame failed";
return nullptr;
}
break;
case GOAWAY_FRAME:
if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
LOG(DFATAL) << "AppendGoAwayFrame failed";
return nullptr;
}
break;
case WINDOW_UPDATE_FRAME:
if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
LOG(DFATAL) << "AppendWindowUpdateFrame failed";
return nullptr;
}
break;
case BLOCKED_FRAME:
if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
LOG(DFATAL) << "AppendBlockedFrame failed";
return nullptr;
}
break;
default:
RaiseError(QUIC_INVALID_FRAME_DATA);
LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
return nullptr;
}
++i;
}
QuicPacket* packet =
new QuicPacket(writer.data(), writer.length(), false,
header.public_header.connection_id_length,
header.public_header.version_flag,
header.public_header.sequence_number_length);
if (fec_builder_) {
fec_builder_->OnBuiltFecProtectedPayload(header,
packet->FecProtectedData());
}
return packet;
}
QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
const QuicFecData& fec) {
DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
DCHECK_NE(0u, header.fec_group);
size_t len = GetPacketHeaderSize(header);
len += fec.redundancy.length();
scoped_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
if (!AppendPacketHeader(header, &writer)) {
LOG(DFATAL) << "AppendPacketHeader failed";
return nullptr;
}
if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
LOG(DFATAL) << "Failed to add FEC";
return nullptr;
}
return new QuicPacket(buffer.release(), len, true,
header.public_header.connection_id_length,
header.public_header.version_flag,
header.public_header.sequence_number_length);
}
// static
QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
const QuicPublicResetPacket& packet) {
DCHECK(packet.public_header.reset_flag);
CryptoHandshakeMessage reset;
reset.set_tag(kPRST);
reset.SetValue(kRNON, packet.nonce_proof);
reset.SetValue(kRSEQ, packet.rejected_sequence_number);
if (!packet.client_address.address().empty()) {
// packet.client_address is non-empty.
QuicSocketAddressCoder address_coder(packet.client_address);
string serialized_address = address_coder.Encode();
if (serialized_address.empty()) {
return nullptr;
}
reset.SetStringPiece(kCADR, serialized_address);
}
const QuicData& reset_serialized = reset.GetSerialized();
size_t len =
kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
scoped_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
if (!writer.WriteUInt8(flags)) {
return nullptr;
}
if (!writer.WriteUInt64(packet.public_header.connection_id)) {
return nullptr;
}
if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
return nullptr;
}
return new QuicEncryptedPacket(buffer.release(), len, true);
}
QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
const QuicPacketPublicHeader& header,
const QuicVersionVector& supported_versions) {
DCHECK(header.version_flag);
size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
scoped_ptr<char[]> buffer(new char[len]);
QuicDataWriter writer(len, buffer.get());
uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
if (!writer.WriteUInt8(flags)) {
return nullptr;
}
if (!writer.WriteUInt64(header.connection_id)) {
return nullptr;
}
for (size_t i = 0; i < supported_versions.size(); ++i) {
if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
return nullptr;
}
}
return new QuicEncryptedPacket(buffer.release(), len, true);
}
bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
DCHECK(!reader_.get());
reader_.reset(new QuicDataReader(packet.data(), packet.length()));
visitor_->OnPacket();
// First parse the public header.
QuicPacketPublicHeader public_header;
if (!ProcessPublicHeader(&public_header)) {
DLOG(WARNING) << "Unable to process public header.";
DCHECK_NE("", detailed_error_);
return RaiseError(QUIC_INVALID_PACKET_HEADER);
}
if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
// The visitor suppresses further processing of the packet.
reader_.reset(nullptr);
return true;
}
if (is_server_ && public_header.version_flag &&
public_header.versions[0] != quic_version_) {
if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
reader_.reset(nullptr);
return true;
}
}
bool rv;
if (!is_server_ && public_header.version_flag) {
rv = ProcessVersionNegotiationPacket(&public_header);
} else if (public_header.reset_flag) {
rv = ProcessPublicResetPacket(public_header);
} else if (packet.length() <= kMaxPacketSize) {
char buffer[kMaxPacketSize];
rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
} else {
scoped_ptr<char[]> large_buffer(new char[packet.length()]);
rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
packet.length());
LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
<< "larger than kMaxPacketSize. packet size:"
<< packet.length();
}
reader_.reset(nullptr);
return rv;
}
bool QuicFramer::ProcessVersionNegotiationPacket(
QuicPacketPublicHeader* public_header) {
DCHECK(!is_server_);
// Try reading at least once to raise error if the packet is invalid.
do {
QuicTag version;
if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
set_detailed_error("Unable to read supported version in negotiation.");
return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
}
public_header->versions.push_back(QuicTagToQuicVersion(version));
} while (!reader_->IsDoneReading());
visitor_->OnVersionNegotiationPacket(*public_header);
return true;
}
bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
const QuicEncryptedPacket& packet,
char* decrypted_buffer,
size_t buffer_length) {
QuicPacketHeader header(public_header);
if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
DLOG(WARNING) << "Unable to process data packet header.";
return false;
}
if (!visitor_->OnPacketHeader(header)) {
// The visitor suppresses further processing of the packet.
return true;
}
if (packet.length() > kMaxPacketSize) {
DLOG(WARNING) << "Packet too large: " << packet.length();
return RaiseError(QUIC_PACKET_TOO_LARGE);
}
// Handle the payload.
if (!header.fec_flag) {
if (header.is_in_fec_group == IN_FEC_GROUP) {
StringPiece payload = reader_->PeekRemainingPayload();
visitor_->OnFecProtectedPayload(payload);
}
if (!ProcessFrameData(header)) {
DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
DLOG(WARNING) << "Unable to process frame data.";
return false;
}
} else {
QuicFecData fec_data;
fec_data.fec_group = header.fec_group;
fec_data.redundancy = reader_->ReadRemainingPayload();
visitor_->OnFecData(fec_data);
}
visitor_->OnPacketComplete();
return true;
}
bool QuicFramer::ProcessPublicResetPacket(
const QuicPacketPublicHeader& public_header) {
QuicPublicResetPacket packet(public_header);
scoped_ptr<CryptoHandshakeMessage> reset(
CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
if (!reset.get()) {
set_detailed_error("Unable to read reset message.");
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
if (reset->tag() != kPRST) {
set_detailed_error("Incorrect message tag.");
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
set_detailed_error("Unable to read nonce proof.");
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
// TODO(satyamshekhar): validate nonce to protect against DoS.
if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
QUIC_NO_ERROR) {
set_detailed_error("Unable to read rejected sequence number.");
return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
}
StringPiece address;
if (reset->GetStringPiece(kCADR, &address)) {
QuicSocketAddressCoder address_coder;
if (address_coder.Decode(address.data(), address.length())) {
packet.client_address = IPEndPoint(address_coder.ip(),
address_coder.port());
}
}
visitor_->OnPublicResetPacket(packet);
return true;
}
bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
StringPiece payload) {
DCHECK(!reader_.get());
visitor_->OnRevivedPacket();
header->entropy_hash = GetPacketEntropyHash(*header);
if (!visitor_->OnPacketHeader(*header)) {
return true;
}
if (payload.length() > kMaxPacketSize) {
set_detailed_error("Revived packet too large.");
return RaiseError(QUIC_PACKET_TOO_LARGE);
}
reader_.reset(new QuicDataReader(payload.data(), payload.length()));
if (!ProcessFrameData(*header)) {
DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
DLOG(WARNING) << "Unable to process frame data.";
return false;
}
visitor_->OnPacketComplete();
reader_.reset(nullptr);
return true;
}
bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
QuicDataWriter* writer) {
DVLOG(1) << "Appending header: " << header;
DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
uint8 public_flags = 0;
if (header.public_header.reset_flag) {
public_flags |= PACKET_PUBLIC_FLAGS_RST;
}
if (header.public_header.version_flag) {
public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
}
public_flags |=
GetSequenceNumberFlags(header.public_header.sequence_number_length)
<< kPublicHeaderSequenceNumberShift;
switch (header.public_header.connection_id_length) {
case PACKET_0BYTE_CONNECTION_ID:
if (!writer->WriteUInt8(
public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
return false;
}
break;
case PACKET_1BYTE_CONNECTION_ID:
if (!writer->WriteUInt8(
public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
return false;
}
if (!writer->WriteUInt8(
header.public_header.connection_id & k1ByteConnectionIdMask)) {
return false;
}
break;
case PACKET_4BYTE_CONNECTION_ID:
if (!writer->WriteUInt8(
public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
return false;
}
if (!writer->WriteUInt32(
header.public_header.connection_id & k4ByteConnectionIdMask)) {
return false;
}
break;
case PACKET_8BYTE_CONNECTION_ID:
if (!writer->WriteUInt8(
public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
return false;
}
if (!writer->WriteUInt64(header.public_header.connection_id)) {
return false;
}
break;
}
last_serialized_connection_id_ = header.public_header.connection_id;
if (header.public_header.version_flag) {
DCHECK(!is_server_);
writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
}
if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
header.packet_sequence_number, writer)) {
return false;
}
uint8 private_flags = 0;
if (header.entropy_flag) {
private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
}
if (header.is_in_fec_group == IN_FEC_GROUP) {
private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
}
if (header.fec_flag) {
private_flags |= PACKET_PRIVATE_FLAGS_FEC;
}
if (!writer->WriteUInt8(private_flags)) {
return false;
}
// The FEC group number is the sequence number of the first fec
// protected packet, or 0 if this packet is not protected.
if (header.is_in_fec_group == IN_FEC_GROUP) {
DCHECK_LE(header.fec_group, header.packet_sequence_number);
DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
// Offset from the current packet sequence number to the first fec
// protected packet.
uint8 first_fec_protected_packet_offset =
static_cast<uint8>(header.packet_sequence_number - header.fec_group);
if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
return false;
}
}
return true;
}
const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
uint32 time_delta_us) {
// The new time_delta might have wrapped to the next epoch, or it
// might have reverse wrapped to the previous epoch, or it might
// remain in the same epoch. Select the time closest to the previous
// time.
//
// epoch_delta is the delta between epochs. A delta is 4 bytes of
// microseconds.
const uint64 epoch_delta = GG_UINT64_C(1) << 32;
uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
// Wrapping is safe here because a wrapped value will not be ClosestTo below.
uint64 prev_epoch = epoch - epoch_delta;
uint64 next_epoch = epoch + epoch_delta;
uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
epoch + time_delta_us,
ClosestTo(last_timestamp_.ToMicroseconds(),
prev_epoch + time_delta_us,
next_epoch + time_delta_us));
return QuicTime::Delta::FromMicroseconds(time);
}
QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
QuicSequenceNumberLength sequence_number_length,
QuicPacketSequenceNumber packet_sequence_number) const {
// The new sequence number might have wrapped to the next epoch, or
// it might have reverse wrapped to the previous epoch, or it might
// remain in the same epoch. Select the sequence number closest to the
// next expected sequence number, the previous sequence number plus 1.
// epoch_delta is the delta between epochs the sequence number was serialized
// with, so the correct value is likely the same epoch as the last sequence
// number or an adjacent epoch.
const QuicPacketSequenceNumber epoch_delta =
GG_UINT64_C(1) << (8 * sequence_number_length);
QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
return ClosestTo(next_sequence_number,
epoch + packet_sequence_number,
ClosestTo(next_sequence_number,
prev_epoch + packet_sequence_number,
next_epoch + packet_sequence_number));
}
bool QuicFramer::ProcessPublicHeader(
QuicPacketPublicHeader* public_header) {
uint8 public_flags;
if (!reader_->ReadBytes(&public_flags, 1)) {
set_detailed_error("Unable to read public flags.");
return false;
}
public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
public_header->version_flag =
(public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
if (validate_flags_ &&
!public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
set_detailed_error("Illegal public flags value.");
return false;
}
if (public_header->reset_flag && public_header->version_flag) {
set_detailed_error("Got version flag in reset packet");
return false;
}
switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
if (!reader_->ReadUInt64(&public_header->connection_id)) {
set_detailed_error("Unable to read ConnectionId.");
return false;
}
public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
break;
case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
// If the connection_id is truncated, expect to read the last serialized
// connection_id.
if (!reader_->ReadBytes(&public_header->connection_id,
PACKET_4BYTE_CONNECTION_ID)) {
set_detailed_error("Unable to read ConnectionId.");
return false;
}
if (last_serialized_connection_id_ &&
(public_header->connection_id & k4ByteConnectionIdMask) !=
(last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
set_detailed_error("Truncated 4 byte ConnectionId does not match "
"previous connection_id.");
return false;
}
public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
public_header->connection_id = last_serialized_connection_id_;
break;
case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
if (!reader_->ReadBytes(&public_header->connection_id,
PACKET_1BYTE_CONNECTION_ID)) {
set_detailed_error("Unable to read ConnectionId.");
return false;
}
if (last_serialized_connection_id_ &&
(public_header->connection_id & k1ByteConnectionIdMask) !=
(last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
set_detailed_error("Truncated 1 byte ConnectionId does not match "
"previous connection_id.");
return false;
}
public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
public_header->connection_id = last_serialized_connection_id_;
break;
case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
public_header->connection_id = last_serialized_connection_id_;
break;
}
public_header->sequence_number_length =
ReadSequenceNumberLength(
public_flags >> kPublicHeaderSequenceNumberShift);
// Read the version only if the packet is from the client.
// version flag from the server means version negotiation packet.
if (public_header->version_flag && is_server_) {
QuicTag version_tag;
if (!reader_->ReadUInt32(&version_tag)) {
set_detailed_error("Unable to read protocol version.");
return false;
}
// If the version from the new packet is the same as the version of this
// framer, then the public flags should be set to something we understand.
// If not, this raises an error.
QuicVersion version = QuicTagToQuicVersion(version_tag);
if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
set_detailed_error("Illegal public flags value.");
return false;
}
public_header->versions.push_back(version);
}
return true;
}
// static
QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
QuicPacketSequenceNumber sequence_number) {
if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
return PACKET_1BYTE_SEQUENCE_NUMBER;
} else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
return PACKET_2BYTE_SEQUENCE_NUMBER;
} else if (sequence_number <
GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
return PACKET_4BYTE_SEQUENCE_NUMBER;
} else {
return PACKET_6BYTE_SEQUENCE_NUMBER;
}
}
// static
uint8 QuicFramer::GetSequenceNumberFlags(
QuicSequenceNumberLength sequence_number_length) {
switch (sequence_number_length) {
case PACKET_1BYTE_SEQUENCE_NUMBER:
return PACKET_FLAGS_1BYTE_SEQUENCE;
case PACKET_2BYTE_SEQUENCE_NUMBER:
return PACKET_FLAGS_2BYTE_SEQUENCE;
case PACKET_4BYTE_SEQUENCE_NUMBER:
return PACKET_FLAGS_4BYTE_SEQUENCE;
case PACKET_6BYTE_SEQUENCE_NUMBER:
return PACKET_FLAGS_6BYTE_SEQUENCE;
default:
LOG(DFATAL) << "Unreachable case statement.";
return PACKET_FLAGS_6BYTE_SEQUENCE;
}
}
// static
QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
const QuicAckFrame& frame) {
AckFrameInfo ack_info;
if (frame.missing_packets.empty()) {
return ack_info;
}
DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
size_t cur_range_length = 0;
SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
QuicPacketSequenceNumber last_missing = *iter;
++iter;
for (; iter != frame.missing_packets.end(); ++iter) {
if (cur_range_length < numeric_limits<uint8>::max() &&
*iter == (last_missing + 1)) {
++cur_range_length;
} else {
ack_info.nack_ranges[last_missing - cur_range_length] =
static_cast<uint8>(cur_range_length);
cur_range_length = 0;
}
ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
last_missing = *iter;
}
// Include the last nack range.
ack_info.nack_ranges[last_missing - cur_range_length] =
static_cast<uint8>(cur_range_length);
// Include the range to the largest observed.
ack_info.max_delta =
max(ack_info.max_delta, frame.largest_observed - last_missing);
return ack_info;
}
bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
const QuicEncryptedPacket& packet,