Fetch the fatjar:
wget https://repo1.maven.org/maven2/io/anserini/anserini/0.36.0/anserini-0.36.0-fatjar.jar
Note that prebuilt indexes will be downloaded to ~/.cache/pyserini/indexes/
.
Currently, this path is hard-coded (see Anserini #2322).
If you want to change the download location, the current workaround is to use symlinks, i.e., symlink ~/.cache/pyserini/indexes/
to the actual path you desire.
Let's start out by setting the ANSERINI_JAR
and the OUTPUT_DIR
:
export ANSERINI_JAR="anserini-0.36.0-fatjar.jar"
export OUTPUT_DIR="."
❗ Beware, you need lots of space to run these experiments.
The msmarco-v2.1-doc
prebuilt index is 63 GB uncompressed.
The msmarco-v2.1-doc-segmented
prebuilt index is 84 GB uncompressed.
Both indexes will be downloaded automatically.
Here are the instructions for reproducing runs on the MS MARCO V2.1 document corpus with prebuilt indexes (adjust number of threads based on available resources):
TOPICS=(msmarco-v2-doc-dev msmarco-v2-doc-dev2 trec2021-dl trec2022-dl trec2023-dl rag24-raggy-dev); for t in "${TOPICS[@]}"
do
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index msmarco-v2.1-doc -topics $t -output $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.${t}.txt -threads 16 -bm25
done
Evaluation
Run these commands for evaluation:
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank msmarco-v2.1-doc.dev $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.msmarco-v2-doc-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank msmarco-v2.1-doc.dev2 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.msmarco-v2-doc-dev2.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2021-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2022-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2023-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.rag24-raggy-dev.txt
And these are the expected scores:
recip_rank all 0.1654
recip_rank all 0.1732
map all 0.2281
recip_rank all 0.8466
ndcg_cut_10 all 0.5183
recall_100 all 0.3502
recall_1000 all 0.6915
map all 0.0841
recip_rank all 0.6623
ndcg_cut_10 all 0.2991
recall_100 all 0.1866
recall_1000 all 0.4254
map all 0.1089
recip_rank all 0.5783
ndcg_cut_10 all 0.2914
recall_100 all 0.2604
recall_1000 all 0.5383
map all 0.1251
recip_rank all 0.7060
ndcg_cut_10 all 0.3631
recall_100 all 0.2433
recall_1000 all 0.5317
Here are the instructions for reproducing runs on the MS MARCO V2.1 segmented document corpus with prebuilt indexes (adjust number of threads based on available resources):
TOPICS=(msmarco-v2-doc-dev msmarco-v2-doc-dev2 trec2021-dl trec2022-dl trec2023-dl rag24-raggy-dev); for t in "${TOPICS[@]}"
do
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index msmarco-v2.1-doc-segmented -topics $t -output $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.${t}.txt -threads 16 -bm25 -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000
done
Evaluation
Run these commands for evaluation:
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank msmarco-v2.1-doc.dev $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.msmarco-v2-doc-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank msmarco-v2.1-doc.dev2 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.msmarco-v2-doc-dev2.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2021-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl21-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2021-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2022-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl22-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2022-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2023-dl.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 dl23-doc-msmarco-v2.1 $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.trec2023-dl.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m map rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -M 100 -m recip_rank -c -m ndcg_cut.10 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.100 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.rag24-raggy-dev.txt
java -cp $ANSERINI_JAR trec_eval -c -m recall.1000 rag24.raggy-dev $OUTPUT_DIR/run.msmarco-v2.1-doc-segmented.bm25.rag24-raggy-dev.txt
And these are the expected scores:
recip_rank all 0.1973
recip_rank all 0.2000
map all 0.2609
recip_rank all 0.9026
ndcg_cut_10 all 0.5778
recall_100 all 0.3811
recall_1000 all 0.7115
map all 0.1079
recip_rank all 0.7213
ndcg_cut_10 all 0.3576
recall_100 all 0.2330
recall_1000 all 0.4790
map all 0.1391
recip_rank all 0.6519
ndcg_cut_10 all 0.3356
recall_100 all 0.3049
recall_1000 all 0.5852
map all 0.1561
recip_rank all 0.7465
ndcg_cut_10 all 0.4227
recall_100 all 0.2807
recall_1000 all 0.5745
To generate jsonl output containing the raw documents that can be reranked and further processed, use the -outputRerankerRequests
option to specify an output file.
For example:
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection \
-index msmarco-v2.1-doc \
-topics trec2023-dl \
-output $OUTPUT_DIR/run.msmarco-v2.1-doc.bm25.trec2023-dl.txt \
-bm25 -hits 20 \
-outputRerankerRequests $OUTPUT_DIR/results.msmarco-v2.1-doc.bm25.trec2023-dl.jsonl
And the output looks something like:
$ head -n 1 $OUTPUT_DIR/results.msmarco-v2.1-doc.bm25.trec2023-dl.jsonl | jq
{
"query": {
"text": "How does the process of digestion and metabolism of carbohydrates start",
"qid": 2000138
},
"candidates": [
{
"docid": "msmarco_v2.1_doc_15_390497775",
"score": 14.3364,
"doc": {
"url": "https://diabetestalk.net/blood-sugar/conversion-of-carbohydrates-to-glucose",
"title": "Conversion Of Carbohydrates To Glucose | DiabetesTalk.Net",
"headings": "...",
"body": "..."
}
},
{
"docid": "msmarco_v2.1_doc_15_416962410",
"score": 14.2271,
"doc": {
"url": "https://diabetestalk.net/insulin/how-is-starch-converted-to-glucose-in-the-body",
"title": "How Is Starch Converted To Glucose In The Body? | DiabetesTalk.Net",
"headings": "...",
"body": "..."
}
},
...
]
}
❗ Beware, the (automatically downloaded) indexes for running these experiments take up 200 GB in total.
Currently, Anserini provides support for the following models:
- BM25
- SPLADE++ EnsembleDistil: cached queries and ONNX query encoding
- cosDPR-distil: cached queries and ONNX query encoding
- bge-base-en-v1.5: cached queries and ONNX query encoding
- cohere-embed-english-v3.0: cached queries and ONNX query encoding
The following snippet will generate the complete set of results for MS MARCO V1 Passage:
# BM25
TOPICS=(msmarco-v1-passage.dev dl19-passage dl20-passage); for t in "${TOPICS[@]}"
do
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index msmarco-v1-passage -topics ${t} -output $OUTPUT_DIR/run.${t}.bm25.txt -threads 16 -bm25
done
# SPLADE++ ED
TOPICS=(msmarco-v1-passage.dev dl19-passage dl20-passage); for t in "${TOPICS[@]}"
do
# Using cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index msmarco-v1-passage.splade-pp-ed -topics ${t}.splade-pp-ed -output $OUTPUT_DIR/run.${t}.splade-pp-ed.cached_q.txt -threads 16 -impact -pretokenized
# Using ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index msmarco-v1-passage.splade-pp-ed -topics ${t} -encoder SpladePlusPlusEnsembleDistil -output $OUTPUT_DIR/run.${t}.splade-pp-ed.onnx.txt -threads 16 -impact -pretokenized
done
# cosDPR-distil
TOPICS=(msmarco-v1-passage.dev dl19-passage dl20-passage); for t in "${TOPICS[@]}"
do
# Using fp32 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cos-dpr-distil -topics ${t}.cos-dpr-distil -output $OUTPUT_DIR/run.${t}.cos-dpr-distil.fp32.cached_q.txt -threads 16 -efSearch 1000
# Using fp32 index, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cos-dpr-distil -topics ${t} -encoder CosDprDistil -output $OUTPUT_DIR/run.${t}.cos-dpr-distil.fp32.onnx.txt -threads 16 -efSearch 1000
# Using int8 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cos-dpr-distil.quantized -topics ${t}.cos-dpr-distil -output $OUTPUT_DIR/run.${t}.cos-dpr-distil.int8.cached_q.txt -threads 16 -efSearch 1000
# Using int8 index, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cos-dpr-distil.quantized -topics ${t} -encoder CosDprDistil -output $OUTPUT_DIR/run.${t}.cos-dpr-distil.int8.onnx.txt -threads 16 -efSearch 1000
done
# bge-base-en-v1.5
TOPICS=(msmarco-v1-passage.dev dl19-passage dl20-passage); for t in "${TOPICS[@]}"
do
# Using fp32 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.bge-base-en-v1.5 -topics ${t}.bge-base-en-v1.5 -output $OUTPUT_DIR/run.${t}.bge-base-en-v1.5.fp32.cached_q.txt -threads 16 -efSearch 1000
# Using fp32 index, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.bge-base-en-v1.5 -topics ${t} -encoder BgeBaseEn15 -output $OUTPUT_DIR/run.${t}.bge-base-en-v1.5.fp32.onnx.txt -threads 16 -efSearch 1000
# Using int8 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.bge-base-en-v1.5.quantized -topics ${t}.bge-base-en-v1.5 -output $OUTPUT_DIR/run.${t}.bge-base-en-v1.5.int8.cached_q.txt -threads 16 -efSearch 1000
# Using int8 index, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.bge-base-en-v1.5.quantized -topics ${t} -encoder BgeBaseEn15 -output $OUTPUT_DIR/run.${t}.bge-base-en-v1.5.int8.onnx.txt -threads 16 -efSearch 1000
done
# cohere-embed-english-v3.0
TOPICS=(msmarco-v1-passage.dev dl19-passage dl20-passage); for t in "${TOPICS[@]}"
do
# Using fp32 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cohere-embed-english-v3.0 -topics ${t}.cohere-embed-english-v3.0 -output $OUTPUT_DIR/run.${t}.cohere-embed-english-v3.0.fp32.cached_q.txt -threads 16 -efSearch 1000
# Using int8 index, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index msmarco-v1-passage.cohere-embed-english-v3.0.quantized -topics ${t}.cohere-embed-english-v3.0 -output $OUTPUT_DIR/run.${t}.cohere-embed-english-v3.0.int8.cached_q.txt -threads 16 -efSearch 1000
done
Here are the expected scores (dev using MRR@10, DL19 and DL20 using nDCG@10):
dev | DL19 | DL20 | |
---|---|---|---|
BM25 | 0.1840 | 0.5058 | 0.4796 |
SPLADE++ ED (cached queries) | 0.3830 | 0.7317 | 0.7198 |
SPLADE++ ED (ONNX) | 0.3828 | 0.7308 | 0.7197 |
cosDPR-distil w/ HNSW fp32 (cached queries) | 0.3887 | 0.7250 | 0.7025 |
cosDPR-distil w/ HNSW fp32 (ONNX) | 0.3887 | 0.7250 | 0.7025 |
cosDPR-distil w/ HNSW int8 (cached queries) | 0.3897 | 0.7240 | 0.7004 |
cosDPR-distil w/ HNSW int8 (ONNX) | 0.3899 | 0.7247 | 0.6996 |
bge-base-en-v1.5 w/ HNSW fp32 (cached queries) | 0.3574 | 0.7065 | 0.6780 |
bge-base-en-v1.5 w/ HNSW fp32 (ONNX) | 0.3575 | 0.7016 | 0.6768 |
bge-base-en-v1.5 w/ HNSW int8 (cached queries) | 0.3572 | 0.7016 | 0.6738 |
bge-base-en-v1.5 w/ HNSW int8 (ONNX) | 0.3575 | 0.7017 | 0.6767 |
cohere-embed-english-v3.0 w/ HNSW fp32 (cached queries) | 0.3647 | 0.6956 | 0.7245 |
cohere-embed-english-v3.0 w/ HNSW int8 (cached queries) | 0.3656 | 0.6955 | 0.7262 |
Evaluation
And here's the snippet of code to perform the evaluation (which will yield the results above):
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.bm25.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.bm25.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.bm25.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.splade-pp-ed.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.splade-pp-ed.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.splade-pp-ed.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.splade-pp-ed.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.splade-pp-ed.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.splade-pp-ed.onnx.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cos-dpr-distil.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cos-dpr-distil.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cos-dpr-distil.fp32.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cos-dpr-distil.fp32.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cos-dpr-distil.fp32.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cos-dpr-distil.fp32.onnx.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cos-dpr-distil.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cos-dpr-distil.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cos-dpr-distil.int8.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cos-dpr-distil.int8.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cos-dpr-distil.int8.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cos-dpr-distil.int8.onnx.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.bge-base-en-v1.5.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.bge-base-en-v1.5.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.bge-base-en-v1.5.fp32.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.bge-base-en-v1.5.fp32.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.bge-base-en-v1.5.fp32.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.bge-base-en-v1.5.fp32.onnx.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.bge-base-en-v1.5.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.bge-base-en-v1.5.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.bge-base-en-v1.5.int8.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.bge-base-en-v1.5.int8.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.bge-base-en-v1.5.int8.onnx.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.bge-base-en-v1.5.int8.onnx.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cohere-embed-english-v3.0.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cohere-embed-english-v3.0.fp32.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cohere-embed-english-v3.0.fp32.cached_q.txt
echo ''
java -cp $ANSERINI_JAR trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset $OUTPUT_DIR/run.msmarco-v1-passage.dev.cohere-embed-english-v3.0.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl19-passage $OUTPUT_DIR/run.dl19-passage.cohere-embed-english-v3.0.int8.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -m ndcg_cut.10 -c dl20-passage $OUTPUT_DIR/run.dl20-passage.cohere-embed-english-v3.0.int8.cached_q.txt
❗ Beware, the (automatically downloaded) indexes for running these experiments take up 246 GB in total.
Currently, Anserini provides support for the following models:
- Flat = BM25, "flat" bag-of-words baseline
- MF = BM25, "multifield" bag-of-words baseline
- S = SPLADE++ EnsembleDistil:
- cached queries (Sp)
- ONNX query encoding (So)
- D = bge-base-en-v1.5
- cached queries (Dp)
- ONNX query encoding (Do)
The following snippet will generate the complete set of results for BEIR:
CORPORA=(trec-covid bioasq nfcorpus nq hotpotqa fiqa signal1m trec-news robust04 arguana webis-touche2020 cqadupstack-android cqadupstack-english cqadupstack-gaming cqadupstack-gis cqadupstack-mathematica cqadupstack-physics cqadupstack-programmers cqadupstack-stats cqadupstack-tex cqadupstack-unix cqadupstack-webmasters cqadupstack-wordpress quora dbpedia-entity scidocs fever climate-fever scifact); for c in "${CORPORA[@]}"
do
# "flat" indexes
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index beir-v1.0.0-${c}.flat -topics beir-${c} -output $OUTPUT_DIR/run.beir.${c}.flat.txt -bm25 -removeQuery
# "multifield" indexes
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index beir-v1.0.0-${c}.multifield -topics beir-${c} -output $OUTPUT_DIR/run.beir.${c}.multifield.txt -bm25 -removeQuery -fields contents=1.0 title=1.0
# SPLADE++ ED, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index beir-v1.0.0-${c}.splade-pp-ed -topics beir-${c}.splade-pp-ed -output $OUTPUT_DIR/run.beir.${c}.splade-pp-ed.cached_q.txt -impact -pretokenized -removeQuery
# SPLADE++ ED, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchCollection -index beir-v1.0.0-${c}.splade-pp-ed -topics beir-${c} -encoder SpladePlusPlusEnsembleDistil -output $OUTPUT_DIR/run.beir.${c}.splade-pp-ed.onnx.txt -impact -pretokenized -removeQuery
# BGE-base-en-v1.5, cached queries
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index beir-v1.0.0-${c}.bge-base-en-v1.5 -topics beir-${c}.bge-base-en-v1.5 -output $OUTPUT_DIR/run.beir.${c}.bge.cached_q.txt -threads 16 -efSearch 1000 -removeQuery
# BGE-base-en-v1.5, ONNX
java -cp $ANSERINI_JAR io.anserini.search.SearchHnswDenseVectors -index beir-v1.0.0-${c}.bge-base-en-v1.5 -topics beir-${c} -encoder BgeBaseEn15 -output $OUTPUT_DIR/run.beir.${c}.bge.onnx.txt -threads 16 -efSearch 1000 -removeQuery
done
Here are the expected nDCG@10 scores:
Corpus | Flat | MF | Sp | So | Dp | Do |
---|---|---|---|---|---|---|
trec-covid |
0.5947 | 0.6559 | 0.7274 | 0.7270 | 0.7834 | 0.7835 |
bioasq |
0.5225 | 0.4646 | 0.4980 | 0.4980 | 0.4042 | 0.4042 |
nfcorpus |
0.3218 | 0.3254 | 0.3470 | 0.3473 | 0.3735 | 0.3738 |
nq |
0.3055 | 0.3285 | 0.5378 | 0.5372 | 0.5413 | 0.5415 |
hotpotqa |
0.6330 | 0.6027 | 0.6868 | 0.6868 | 0.7242 | 0.7241 |
fiqa |
0.2361 | 0.2361 | 0.3475 | 0.3473 | 0.4065 | 0.4065 |
signal1m |
0.3304 | 0.3304 | 0.3008 | 0.3006 | 0.2869 | 0.2869 |
trec-news |
0.3952 | 0.3977 | 0.4152 | 0.4169 | 0.4411 | 0.4410 |
robust04 |
0.4070 | 0.4070 | 0.4679 | 0.4651 | 0.4467 | 0.4437 |
arguana |
0.3970 | 0.4142 | 0.5203 | 0.5218 | 0.6361 | 0.6228 |
webis-touche2020 |
0.4422 | 0.3673 | 0.2468 | 0.2464 | 0.2570 | 0.2571 |
cqadupstack-android |
0.3801 | 0.3709 | 0.3904 | 0.3898 | 0.5075 | 0.5076 |
cqadupstack-english |
0.3453 | 0.3321 | 0.4079 | 0.4078 | 0.4855 | 0.4855 |
cqadupstack-gaming |
0.4822 | 0.4418 | 0.4957 | 0.4959 | 0.5965 | 0.5967 |
cqadupstack-gis |
0.2901 | 0.2904 | 0.3150 | 0.3148 | 0.4129 | 0.4133 |
cqadupstack-mathematica |
0.2015 | 0.2046 | 0.2377 | 0.2379 | 0.3163 | 0.3163 |
cqadupstack-physics |
0.3214 | 0.3248 | 0.3599 | 0.3597 | 0.4722 | 0.4724 |
cqadupstack-programmers |
0.2802 | 0.2963 | 0.3401 | 0.3399 | 0.4242 | 0.4238 |
cqadupstack-stats |
0.2711 | 0.2790 | 0.2990 | 0.2980 | 0.3731 | 0.3728 |
cqadupstack-tex |
0.2244 | 0.2086 | 0.2530 | 0.2529 | 0.3115 | 0.3115 |
cqadupstack-unix |
0.2749 | 0.2788 | 0.3167 | 0.3170 | 0.4219 | 0.4220 |
cqadupstack-webmasters |
0.3059 | 0.3008 | 0.3167 | 0.3166 | 0.4065 | 0.4072 |
cqadupstack-wordpress |
0.2483 | 0.2562 | 0.2733 | 0.2718 | 0.3547 | 0.3547 |
quora |
0.7886 | 0.7886 | 0.8343 | 0.8344 | 0.8890 | 0.8876 |
dbpedia-entity |
0.3180 | 0.3128 | 0.4366 | 0.4374 | 0.4077 | 0.4076 |
scidocs |
0.1490 | 0.1581 | 0.1591 | 0.1588 | 0.2170 | 0.2172 |
fever |
0.6513 | 0.7530 | 0.7882 | 0.7879 | 0.8620 | 0.8620 |
climate-fever |
0.1651 | 0.2129 | 0.2297 | 0.2298 | 0.3119 | 0.3117 |
scifact |
0.6789 | 0.6647 | 0.7041 | 0.7036 | 0.7408 | 0.7408 |
Evaluation
And here's the snippet of code to perform the evaluation (which will yield the results above):
CORPORA=(trec-covid bioasq nfcorpus nq hotpotqa fiqa signal1m trec-news robust04 arguana webis-touche2020 cqadupstack-android cqadupstack-english cqadupstack-gaming cqadupstack-gis cqadupstack-mathematica cqadupstack-physics cqadupstack-programmers cqadupstack-stats cqadupstack-tex cqadupstack-unix cqadupstack-webmasters cqadupstack-wordpress quora dbpedia-entity scidocs fever climate-fever scifact); for c in "${CORPORA[@]}"
do
echo $c
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.flat.txt
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.multifield.txt
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.splade-pp-ed.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.splade-pp-ed.onnx.txt
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.bge.cached_q.txt
java -cp $ANSERINI_JAR trec_eval -c -m ndcg_cut.10 qrels.beir-v1.0.0-${c}.test.txt $OUTPUT_DIR/run.beir.${c}.bge.onnx.txt
done