Skip to content

Commit eace8e7

Browse files
mgoinDamonFool
authored andcommitted
[Docs] Add nsight guide to profiling docs (vllm-project#14298)
Signed-off-by: mgoin <mgoin64@gmail.com>
1 parent f8a96ba commit eace8e7

File tree

1 file changed

+88
-3
lines changed

1 file changed

+88
-3
lines changed

docs/source/contributing/profiling/profiling_index.md

Lines changed: 88 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,8 @@
44
Profiling is only intended for vLLM developers and maintainers to understand the proportion of time spent in different parts of the codebase. **vLLM end-users should never turn on profiling** as it will significantly slow down the inference.
55
:::
66

7+
## Profile with PyTorch Profiler
8+
79
We support tracing vLLM workers using the `torch.profiler` module. You can enable tracing by setting the `VLLM_TORCH_PROFILER_DIR` environment variable to the directory where you want to save the traces: `VLLM_TORCH_PROFILER_DIR=/mnt/traces/`
810

911
The OpenAI server also needs to be started with the `VLLM_TORCH_PROFILER_DIR` environment variable set.
@@ -22,13 +24,13 @@ Set the env variable VLLM_RPC_TIMEOUT to a big number before you start the serve
2224
`export VLLM_RPC_TIMEOUT=1800000`
2325
:::
2426

25-
## Example commands and usage
27+
### Example commands and usage
2628

27-
### Offline Inference
29+
#### Offline Inference
2830

2931
Refer to <gh-file:examples/offline_inference/simple_profiling.py> for an example.
3032

31-
### OpenAI Server
33+
#### OpenAI Server
3234

3335
```bash
3436
VLLM_TORCH_PROFILER_DIR=./vllm_profile python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B
@@ -39,3 +41,86 @@ benchmark_serving.py:
3941
```bash
4042
python benchmarks/benchmark_serving.py --backend vllm --model meta-llama/Meta-Llama-3-70B --dataset-name sharegpt --dataset-path sharegpt.json --profile --num-prompts 2
4143
```
44+
45+
## Profile with NVIDIA Nsight Systems
46+
47+
Nsight systems is an advanced tool that exposes more profiling details, such as register and shared memory usage, annotated code regions and low-level CUDA APIs and events.
48+
49+
[Install nsight-systems](https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html) using your package manager.
50+
The following block is an example for Ubuntu.
51+
52+
```bash
53+
apt update
54+
apt install -y --no-install-recommends gnupg
55+
echo "deb http://developer.download.nvidia.com/devtools/repos/ubuntu$(source /etc/lsb-release; echo "$DISTRIB_RELEASE" | tr -d .)/$(dpkg --print-architecture) /" | tee /etc/apt/sources.list.d/nvidia-devtools.list
56+
apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
57+
apt update
58+
apt install nsight-systems-cli
59+
```
60+
61+
### Example commands and usage
62+
63+
#### Offline Inference
64+
65+
For basic usage, you can just append `nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node` before any existing script you would run for offline inference.
66+
67+
The following is an example using the `benchmarks/benchmark_latency.py` script:
68+
69+
```bash
70+
nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node python benchmarks/benchmark_latency.py --model meta-llama/Llama-3.1-8B-Instruct --num-iters-warmup 5 --num-iters 1 --batch-size 16 --input-len 512 --output-len 8
71+
```
72+
73+
#### OpenAI Server
74+
75+
To profile the server, you will want to prepend your `vllm serve` command with `nsys profile` just like for offline inference, however you must specify `--delay XX --duration YY` parameters according to the needs of your benchmark. After the duration time has been used up, the server will be killed.
76+
77+
```bash
78+
# server
79+
nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node --delay 30 --duration 60 vllm serve meta-llama/Llama-3.1-8B-Instruct
80+
81+
# client
82+
python benchmarks/benchmark_serving.py --backend vllm --model meta-llama/Llama-3.1-8B-Instruct --num-prompts 1 --dataset-name random --random-input 1024 --random-output 512
83+
```
84+
85+
In practice, you should set the `--duration` argument to a large value. Whenever you want the server to stop profiling, run:
86+
87+
```
88+
nsys sessions list
89+
```
90+
91+
to get the session id in the form of `profile-XXXXX`, then run:
92+
93+
```
94+
nsys stop --session=profile-XXXXX
95+
```
96+
97+
to manually kill the profiler and generate your `nsys-rep` report.
98+
99+
#### Analysis
100+
101+
You can view these profiles either as summaries in the CLI, using `nsys stats [profile-file]`, or in the GUI by installing Nsight [locally following the directions here](https://developer.nvidia.com/nsight-systems/get-started).
102+
103+
CLI example:
104+
105+
```bash
106+
nsys stats report1.nsys-rep
107+
...
108+
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum):
109+
110+
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
111+
-------- --------------- --------- ----------- ----------- -------- --------- ----------- ----------------------------------------------------------------------------------------------------
112+
46.3 10,327,352,338 17,505 589,965.9 144,383.0 27,040 3,126,460 944,263.8 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_of…
113+
14.8 3,305,114,764 5,152 641,520.7 293,408.0 287,296 2,822,716 867,124.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize256x128x64_warpgroupsize2x1x1_execute_segment_k_of…
114+
12.1 2,692,284,876 14,280 188,535.4 83,904.0 19,328 2,862,237 497,999.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x128x64_warpgroupsize1x1x1_execute_segment_k_off…
115+
9.5 2,116,600,578 33,920 62,399.8 21,504.0 15,326 2,532,285 290,954.1 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize64x64x64_warpgroupsize1x1x1_execute_segment_k_off_…
116+
5.0 1,119,749,165 18,912 59,208.4 9,056.0 6,784 2,578,366 271,581.7 void vllm::act_and_mul_kernel<c10::BFloat16, &vllm::silu_kernel<c10::BFloat16>, (bool)1>(T1 *, cons…
117+
4.1 916,662,515 21,312 43,011.6 19,776.0 8,928 2,586,205 199,790.1 void cutlass::device_kernel<flash::enable_sm90_or_later<flash::FlashAttnFwdSm90<flash::CollectiveMa…
118+
2.6 587,283,113 37,824 15,526.7 3,008.0 2,719 2,517,756 139,091.1 std::enable_if<T2>(int)0&&vllm::_typeConvert<T1>::exists, void>::type vllm::fused_add_rms_norm_kern…
119+
1.9 418,362,605 18,912 22,121.5 3,871.0 3,328 2,523,870 175,248.2 void vllm::rotary_embedding_kernel<c10::BFloat16, (bool)1>(const long *, T1 *, T1 *, const T1 *, in…
120+
0.7 167,083,069 18,880 8,849.7 2,240.0 1,471 2,499,996 101,436.1 void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0…
121+
...
122+
```
123+
124+
GUI example:
125+
126+
<img width="1799" alt="Screenshot 2025-03-05 at 11 48 42 AM" src="https://github.com/user-attachments/assets/c7cff1ae-6d6f-477d-a342-bd13c4fc424c" />

0 commit comments

Comments
 (0)