Skip to content

Transfer Learning Errors #1167

@FryLaurie

Description

@FryLaurie

First, Transfer Learning documentation needs an update. It references

`
data = dp.Data("your_file.csv")

model_results = data_labeler.fit(x=data['samples'], y=data['labels'],
validation_split=0.2, epochs=2, labels=labels)
`

Accessing the dp.Data object directly isn't subscriptable - you need the data property of the BaseData child class to access the embedded dataframe.

eg:
data = dp.Data("your_file.csv") data_frame = data.data model_results = data_labeler.fit(x=data_frame['samples'], y=data_frame['labels'], validation_split=0.2, epochs=2, labels=labels)

Second, when running a transfer learning per documented process, the package returns the following error:

ValueError: The default_label of UNKNOWN must exist in the label mapping.

This makes sense when extending with a new label, but transfer learning doesn't work as documented.

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugSomething isn't workingDocumentationImprovements or additions to documentation

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions