forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshape_info.py
362 lines (335 loc) · 13 KB
/
shape_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from dataclasses import dataclass
from enum import Enum
from typing import Dict, List, Set
import numpy as np
import tensorrt as trt
import torch
from tensorrt_llm._common import _is_building
from tensorrt_llm._utils import (trt_dtype_to_np, trt_dtype_to_str,
trt_dtype_to_torch)
from tensorrt_llm.logger import logger
from .pipeline_graph import PipelineGraph
from .utils import (get_builder_flags, get_cache_key, get_sorted_layer_ids,
set_trt_network, to_base_class_layer, to_subclass_layer,
to_trt_weights)
class ShapeType(Enum):
MIN = 0
OPT = 1
MAX = 2
_trt_to_type_dict = {
trt.int64: int,
trt.bool: bool,
}
def get_shape_layers(trt_network):
shape_layers = set()
for i in range(trt_network.num_layers):
layer = trt_network.get_layer(i)
if (layer.num_inputs > 0 and np.all([
layer.get_input(j).is_shape_tensor
for j in range(layer.num_inputs)
if layer.get_input(j) is not None
])) or (layer.num_outputs > 0 and np.all([
layer.get_output(j).is_shape_tensor
for j in range(layer.num_outputs)
])):
shape_layers.add(layer.name)
return shape_layers
def get_layers_in_shape_network(trt_network, shape_layers, sorted_layer_ids):
layers = set()
shape_tensors = set()
for layer_id in reversed(sorted_layer_ids):
layer = trt_network.get_layer(layer_id)
in_shape_network = False
if layer.name in shape_layers:
in_shape_network = True
else:
for j in range(layer.num_outputs):
output = layer.get_output(j)
if output.name in shape_tensors:
in_shape_network = True
break
if in_shape_network:
layers.add(layer.name)
for j in range(layer.num_inputs):
input = layer.get_input(j)
if input is not None:
shape_tensors.add(input.name)
return layers
def get_shape_network(trt_network,
shapes,
values,
sorted_layer_ids,
profile=None,
shape_type: ShapeType = ShapeType.OPT):
shape_layers = get_shape_layers(trt_network)
layers_in_shape_network = get_layers_in_shape_network(
trt_network, shape_layers, sorted_layer_ids)
shape_graph = PipelineGraph.create_graph()
shape_network = shape_graph.as_trt()
shape_builder = shape_network.builder
shape_profile = shape_builder.create_optimization_profile()
for i in range(trt_network.num_inputs):
input = trt_network.get_input(i)
shapes[input.name] = input.shape
new_input = shape_graph.add_input(input)
if profile is not None:
if -1 in input.shape:
shape = profile.get_shape(input.name)
shape = shape[shape_type.value]
shapes[input.name] = shape
new_input.raw_shape = shape
if input.is_shape_tensor:
shape_values = profile.get_shape_input(input.name)
value = shape_values[shape_type.value]
values[input.name] = value
shape_profile.set_shape_input(input.name, value, value, value)
output_mapping = {}
for layer_id in sorted_layer_ids:
layer = trt_network.get_layer(layer_id)
if layer.name in shape_layers:
new_layer = shape_graph.add_layer(layer)
for i in range(layer.num_outputs):
output = layer.get_output(i)
if output.dtype == trt.DataType.BOOL:
proxy_layer = shape_network.add_cast(
new_layer.as_trt().get_output(i),
trt.DataType.INT32,
)
proxy_output = proxy_layer.get_output(0)
shape_graph.register_layer(proxy_layer)
shape_graph.add_output_shape(proxy_output)
output_mapping[proxy_output.name] = (output.name,
output.dtype)
else:
shape_graph.add_output_shape(output)
elif layer.name in layers_in_shape_network:
if layer.type == trt.LayerType.CONSTANT:
shape_graph.add_input(layer.get_output(0))
else:
shape_graph.add_layer(layer)
return shape_network, shape_profile, shape_layers, output_mapping
def get_per_layer_graph(
layer,
shapes,
values,
updated_attrs=None,
is_shape_io: bool = None,
):
graph = PipelineGraph.create_graph()
network = graph.as_trt()
is_shape_layer = layer.num_inputs != 0
for i in range(layer.num_inputs):
input = layer.get_input(i)
if input is not None:
shape = shapes[input.name]
if (values.get(input.name) is not None
and not isinstance(values[input.name], torch.Tensor)):
value = values[input.name]
weights = np.asarray(value, dtype=trt_dtype_to_np(input.dtype))
weights = to_trt_weights(weights)
input_layer = network.add_constant(shape, weights)
new_input = input_layer.get_output(0)
new_input.name = input.name
graph.register_layer(input_layer)
elif graph.get_input(input.name) is None:
new_input = graph.add_input(input)
new_input.raw_shape = shapes[input.name]
is_shape_layer = False
new_layer = graph.add_layer(
layer,
updated_attrs=updated_attrs,
)
output_mapping = {}
if layer.type == trt.LayerType.SHAPE:
is_shape_layer = True
if layer.num_inputs == 0:
is_shape_layer = False
if is_shape_io is not None:
is_shape_layer = is_shape_io
for i in range(layer.num_outputs):
output = layer.get_output(i)
value = values.get(output.name)
if value is not None and isinstance(value, torch.Tensor):
is_output_shape = False
elif is_shape_layer:
is_output_shape = True
else:
is_output_shape = False
if is_output_shape:
if output.dtype == trt.DataType.BOOL:
proxy_layer = network.add_cast(
new_layer.as_trt().get_output(i),
trt.DataType.INT32,
)
proxy_output = proxy_layer.get_output(0)
graph.register_layer(proxy_layer)
output_mapping[proxy_output.name] = (output.name, output.dtype)
output = proxy_output
graph.add_output_shape(output)
else:
graph.add_output(output)
return graph, output_mapping
@_is_building
def infer_shapes(network, shapes, values, profile=None):
if network.num_outputs == 0:
return
builder = network.builder
config = builder.create_builder_config()
config.builder_optimization_level = 0
config.flags = get_builder_flags()
profile = profile or builder.create_optimization_profile()
config.add_optimization_profile(profile)
plan = builder.build_serialized_network(network, config)
if plan is None:
raise RuntimeError(
'Engine building failed when inferring shapes, please check the error log.'
)
runtime = trt.Runtime(logger.trt_logger)
engine = runtime.deserialize_cuda_engine(plan)
context = engine.create_execution_context()
for i in range(network.num_inputs):
input = network.get_input(i)
if input.is_shape_tensor:
value = values[input.name]
context.set_shape_input(engine[input.name], value)
for i in range(network.num_outputs):
output = network.get_output(i)
shape = context.get_tensor_shape(output.name)
shapes[output.name] = shape
if output.is_shape_tensor:
if shape == [0]:
values[output.name] = []
else:
if shape == []:
shape = [1]
value = torch.empty(
list(shape),
dtype=trt_dtype_to_torch(output.dtype),
device="cpu",
)
values[output.name] = value
context.set_tensor_address(output.name, value.data_ptr())
context.infer_shapes()
assert context.all_binding_shapes_specified
for i in range(network.num_outputs):
output = network.get_output(i)
if isinstance(values.get(output.name), torch.Tensor):
values[output.name] = values[output.name].tolist()
@dataclass
class ShapeInfo:
shapes: Dict[str, trt.Dims]
values: Dict[str, List[int]]
shape_layers: Set[str]
max_shapes: Dict[str, trt.Dims] = None
def set_constant_value(layer, values):
to_subclass_layer(layer)
output_name = layer.get_output(0).name
weights = layer.weights
if isinstance(weights, trt.Weights):
weights = weights.numpy()
values[output_name] = list(weights)
to_base_class_layer(layer)
def infer_per_layer_shapes(
layer: trt.ILayer,
shapes,
values,
cache=None,
is_shape_io=False,
):
if layer.type == trt.LayerType.CONSTANT:
to_subclass_layer(layer)
output_name = layer.get_output(0).name
shape = layer.shape
shapes[output_name] = shape
if is_shape_io:
set_constant_value(layer, values)
to_base_class_layer(layer)
return
elif layer.type == trt.LayerType.SHAPE:
input_name = layer.get_input(0).name
output_name = layer.get_output(0).name
shape = [*shapes[input_name]]
shapes[output_name] = trt.Dims([len(shape)])
values[output_name] = shape
return
if cache is not None:
cache_key = get_cache_key(layer, shapes, values)
if cache_key in cache:
output_shapes, output_values = cache[cache_key]
for i in range(layer.num_outputs):
output = layer.get_output(i)
shapes[output.name] = output_shapes[i]
if output_values[i] is not None:
values[output.name] = output_values[i]
return
graph, output_mapping = get_per_layer_graph(layer, shapes, values)
dtypes = [
trt_dtype_to_str(layer.get_input(i).dtype)
for i in range(layer.num_inputs)
]
layer_info = (f"type={cache_key[0]}, "
f"attrs={dict(cache_key[1])}, "
f"dtypes={dtypes}, "
f"shapes={list(cache_key[2])}, "
f"values={list(cache_key[3])}")
logger.debug(f"infer shapes for layer {layer.name} ({layer_info})")
try:
infer_shapes(graph.as_trt(), shapes, values)
except RuntimeError as e:
raise RuntimeError(
f"infer shapes failed for layer {layer.name} ({layer_info})") from e
for proxy_output, (output, dtype) in output_mapping.items():
shapes[output] = shapes[proxy_output]
del shapes[proxy_output]
if proxy_output in values:
values[output] = [
*map(_trt_to_type_dict[dtype], values[proxy_output])
]
del values[proxy_output]
if cache is not None:
logger.debug(
f"shape inference cache miss, layer: {layer.name}, cache key: {cache_key}"
)
output_shapes = []
output_values = []
for i in range(layer.num_outputs):
output = layer.get_output(i)
output_shapes.append(shapes[output.name])
output_values.append(values.get(output.name))
cache[cache_key] = (output_shapes, output_values)
def get_shape_info(trt_network, profile, shape_type: ShapeType = ShapeType.OPT):
shapes = {}
values = {}
sorted_layer_ids = get_sorted_layer_ids(trt_network)
infer_shape_layers = False
shape_network, shape_profile, shape_layers, output_mapping = get_shape_network(
trt_network,
shapes,
values,
sorted_layer_ids,
profile=profile,
shape_type=shape_type)
try:
infer_shapes(shape_network, shapes, values, shape_profile)
for proxy_output, (output, dtype) in output_mapping.items():
shapes[output] = shapes[proxy_output]
values[output] = [
*map(_trt_to_type_dict[dtype], values[proxy_output])
]
del shapes[proxy_output]
del values[proxy_output]
except RuntimeError:
infer_shape_layers = True
cache = {}
for layer_id in sorted_layer_ids:
layer = trt_network.get_layer(layer_id)
is_shape_io = layer.name in shape_layers
if is_shape_io and not infer_shape_layers:
continue
set_trt_network(layer, trt_network)
infer_per_layer_shapes(layer,
shapes,
values,
cache,
is_shape_io=is_shape_io)
return ShapeInfo(shapes, values, shape_layers)