-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rdd.py
286 lines (258 loc) · 13 KB
/
train_rdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import copy
import os
import warnings
from absl import app, flags
import numpy as np
import torch
# from tensorboardX import SummaryWriter
from torchvision.datasets import CIFAR10
from torchvision.utils import make_grid, save_image
from torchvision import transforms
from tqdm import trange
import torch.distributed as dist
import importlib
from diffusion import GaussianDiffusionSampler
from model import UNet
from torchvision.datasets import ImageFolder
from losses.losses import Intra_sample_p2p_loss, Memory_p2p_loss
FLAGS = flags.FLAGS
flags.DEFINE_enum('dataset', 'cifar10', ['cifar10', 'imagenet64'], help='dataset')
# UNet
flags.DEFINE_integer('ch', 128, help='base channel of UNet')
flags.DEFINE_multi_integer('ch_mult', [1, 2, 2, 2], help='channel multiplier')
flags.DEFINE_multi_integer('attn', [1], help='add attention to these levels')
flags.DEFINE_integer('num_res_blocks', 2, help='# resblock in each level')
flags.DEFINE_float('dropout', 0., help='dropout rate of resblock')
# Gaussian Diffusion
flags.DEFINE_enum('mean_type', 'xstart', ['xstart', 'epsilon'], help='predict variable')
flags.DEFINE_enum('var_type', 'fixedlarge', ['fixedlarge', 'fixedsmall'], help='variance type')
# Training
flags.DEFINE_float('lr', 5e-5, help='target learning rate')
flags.DEFINE_float('wd', 0., help='target learning rate')
flags.DEFINE_float('grad_clip', 1., help="gradient norm clipping")
flags.DEFINE_integer('total_steps', 10000, help='total training steps') # 2x steps are used when distilling 1-step and 2-step students
flags.DEFINE_integer('img_size', 32, help='image size')
flags.DEFINE_integer('warmup', 0, help='learning rate warmup')
flags.DEFINE_integer('batch_size', 128, help='batch size')
flags.DEFINE_integer('num_workers', 4, help='workers of Dataloader')
flags.DEFINE_float('ema_decay', 0., help="ema decay rate")
flags.DEFINE_string('gpu_id', '4,5,6,7', help='multi gpu training')
flags.DEFINE_integer('local-rank', 0, help='local rank')
flags.DEFINE_bool('distributed', False, help='multi gpu training')
flags.DEFINE_integer('num_gpus', 4, help='multi gpu training')
flags.DEFINE_bool('conditional', False, help='use conditional or not')
flags.DEFINE_integer('class_num', 10, help='class num')
# Logging & Sampling
flags.DEFINE_string('logdir', './logs/CIFAR10/4_d201', help='log directory')
flags.DEFINE_string('base_ckpt', './logs/CIFAR10/8', help='base ckpt')
flags.DEFINE_integer('sample_size', 64, "sampling size of images")
flags.DEFINE_string('loss_type', 'tat', help='loss type')
flags.DEFINE_integer('sample_step', 1000, help='frequency of sampling')
flags.DEFINE_integer('save_step', 1000, help='frequency of saving checkpoints, 0 to disable during training')
flags.DEFINE_integer('seed', 0, help='seed')
# Classifier
flags.DEFINE_string('classifier', 'densenet201', help='classifier type')
flags.DEFINE_string('classifier_path', './classifier/result/cifar10/densenet201', help='classifier path')
flags.DEFINE_float('temperature', 1.0, help='beta')
flags.DEFINE_float('queue_size', 0.1, help='beta')
flags.DEFINE_bool('feature', False, help='use classifier or not')
flags.DEFINE_bool('logits', False, help='use classifier or not')
flags.DEFINE_bool('gt', False, help='use classifier or not')
local_rank = int(os.environ['LOCAL_RANK'])
def infiniteloop(dataloader):
while True:
for x, y in iter(dataloader):
yield x, y
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def train():
if get_rank() == 0:
if not os.path.exists(os.path.join(FLAGS.logdir, 'ddim_clip')):
os.makedirs(os.path.join(FLAGS.logdir, 'ddim_clip'))
ckpt_teacher = torch.load(os.path.join(FLAGS.base_ckpt, 'ckpt.pt'), map_location='cuda:{}'.format(local_rank))
T = ckpt_teacher['T']
time_scale = ckpt_teacher['time_scale']
# dataset
if FLAGS.dataset == 'cifar10':
dataset = CIFAR10(
root='/data/dataset', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif FLAGS.dataset == 'imagenet64':
dataset = ImageFolder(
'/data/dataset/ImageNet/train',
transforms.Compose([
transforms.Resize((64, 64)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
imagenet_cls = False
use_feature = FLAGS.feature
if use_feature:
if FLAGS.classifier.startswith('res') or FLAGS.classifier.startswith('wide'):
M = importlib.import_module(".resnet", package='classifier')
classifier = getattr(M, FLAGS.classifier)(num_classes=10, is_big_size=False)
elif FLAGS.classifier.startswith('densenet'):
M = importlib.import_module(".densenet", package='classifier')
classifier = getattr(M, FLAGS.classifier)(num_classes=10, is_big_size=False)
elif FLAGS.classifier.startswith('imagenet_resnet'):
M = importlib.import_module(".imagenet_resnet", package='classifier')
classifier = getattr(M, FLAGS.classifier[9:])(pretrained=True)
imagenet_cls = True
elif FLAGS.classifier.startswith('imagenet_densenet'):
M = importlib.import_module(".imagenet_densenet", package='classifier')
classifier = getattr(M, FLAGS.classifier[9:])(pretrained=True)
imagenet_cls = True
if not FLAGS.classifier.startswith('imagenet'):
ckpt_classifier = torch.load(os.path.join(FLAGS.classifier_path, 'ckpt.pt'), map_location='cuda:{}'.format(local_rank))
classifier.load_state_dict(ckpt_classifier['model'])
classifier = classifier.cuda(local_rank)
# model setup
model = UNet(
T=T*time_scale, ch=FLAGS.ch, ch_mult=FLAGS.ch_mult, attn=FLAGS.attn,
num_res_blocks=FLAGS.num_res_blocks, dropout=FLAGS.dropout,
conditional=FLAGS.conditional, class_num=FLAGS.class_num)
if time_scale == 1:
model.load_state_dict(ckpt_teacher['ema_model'])
else:
model.load_state_dict(ckpt_teacher['net_model'])
student_model = copy.deepcopy(model)
teacher_sampler = GaussianDiffusionSampler(
model, T, time_scale, img_size=FLAGS.img_size,
mean_type=FLAGS.mean_type, var_type=FLAGS.var_type).cuda(local_rank)
student_sampler = GaussianDiffusionSampler(
student_model, T // 2, time_scale * 2, img_size=FLAGS.img_size,
mean_type=FLAGS.mean_type, var_type=FLAGS.var_type).cuda(local_rank)
if use_feature:
if FLAGS.loss_type == 'mp2p':
loss_fun = Memory_p2p_loss(contrast_kd_temperature=1.0, factor=0.1).cuda(local_rank)
elif FLAGS.loss_type == 'none':
loss_fun = None
else:
raise NotImplementedError
else:
loss_fun = None
# loss_fun.cuda(local_rank)
if FLAGS.loss_type == 'mp2p':
add_loss = Intra_sample_p2p_loss(temperature=1.0, pooling=False, factor=1.0).cuda(local_rank)
else:
add_loss = None
if FLAGS.distributed:
teacher_sampler = torch.nn.parallel.DistributedDataParallel(teacher_sampler, device_ids=[local_rank], output_device=local_rank)
student_sampler = torch.nn.parallel.DistributedDataParallel(student_sampler, device_ids=[local_rank], output_device=local_rank)
if use_feature:
classifier = torch.nn.parallel.DistributedDataParallel(classifier, device_ids=[local_rank], output_device=local_rank)
if use_feature and loss_fun is not None and not isinstance(loss_fun, (Intra_sample_p2p_loss)):
loss_fun = torch.nn.parallel.DistributedDataParallel(loss_fun, device_ids=[local_rank], output_device=local_rank)
if add_loss is not None and not isinstance(add_loss, Intra_sample_p2p_loss):
add_loss = torch.nn.parallel.DistributedDataParallel(add_loss, device_ids=[local_rank], output_device=local_rank)
optim = torch.optim.Adam(student_sampler.parameters(), lr=FLAGS.lr, weight_decay=FLAGS.wd)
if use_feature and loss_fun is not None and not isinstance(loss_fun, (Intra_sample_p2p_loss)):
optim_loss = torch.optim.Adam(loss_fun.parameters(), lr=FLAGS.lr, weight_decay=FLAGS.wd)
if add_loss is not None and not isinstance(add_loss, Intra_sample_p2p_loss):
optim_add_loss = torch.optim.Adam(add_loss.parameters(), lr=FLAGS.lr, weight_decay=FLAGS.wd)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=FLAGS.total_steps)
batch_size = int(FLAGS.batch_size / FLAGS.num_gpus)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, seed=FLAGS.seed)
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, num_workers=FLAGS.num_workers, pin_memory=True, sampler=train_sampler, drop_last=True)
train_looper = infiniteloop(train_loader)
# log setup
x_T = ckpt_teacher['x_T']
del ckpt_teacher
grid = (make_grid(next(iter(train_loader))[0][:int(FLAGS.sample_size / FLAGS.num_gpus)]) + 1) / 2
if get_rank() == 0:
with open(os.path.join(FLAGS.logdir, "flagfile.txt"), 'w') as f:
f.write(FLAGS.flags_into_string())
# start training
teacher_sampler.eval()
# classifier.eval()
for p in teacher_sampler.parameters():
p.requires_grad_(False)
if use_feature:
classifier.eval()
for p in classifier.parameters():
p.requires_grad_(False)
else:
classifier = None
print_freq = 500
for step in range(1, FLAGS.total_steps + 1):
train_sampler.set_epoch(step)
# train
samples = next(train_looper)
x_0, y = samples[0].cuda(local_rank), samples[1].cuda(local_rank)
loss, output_content = teacher_sampler.module.RDD(student_sampler, classifier, x_0, y=y,
loss_fun=loss_fun, gt=FLAGS.gt, logits=FLAGS.logits, add_loss=add_loss,
temp=FLAGS.temperature)
optim.zero_grad()
if use_feature and loss_fun is not None and not isinstance(loss_fun, (Intra_sample_p2p_loss)):
optim_loss.zero_grad()
if add_loss is not None and not isinstance(add_loss, Intra_sample_p2p_loss):
optim_add_loss.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(student_sampler.parameters(), FLAGS.grad_clip)
optim.step()
if use_feature and loss_fun is not None and not isinstance(loss_fun, (Intra_sample_p2p_loss)):
optim_loss.step()
if add_loss is not None and not isinstance(add_loss, Intra_sample_p2p_loss):
optim_add_loss.step()
sched.step()
# log
if get_rank() == 0:
# writer.add_scalar('loss', loss, step)
if step == 1 or step % print_freq == 0:
with open(os.path.join(FLAGS.logdir, "train_log.txt"), 'a') as f:
first_content = f"train step:{step}"
f.write(first_content+'\n')
f.write(output_content+'\n')
# sample
if FLAGS.sample_step > 0 and (step % FLAGS.sample_step == 0 or step == 1):
student_sampler.eval()
with torch.no_grad():
y_target = torch.randint(FLAGS.class_num, size=(x_T.shape[0],), device=x_T.device)
x_0 = student_sampler.module.ddim(x_T, 1, True, y=y_target)
grid = (make_grid(x_0) + 1) / 2
path = os.path.join(FLAGS.logdir, 'ddim_clip', '%d.png' % step)
if get_rank() == 0:
save_image(grid, path)
# writer.add_image('ddim_clip', grid, step)
student_sampler.train()
# save
if FLAGS.save_step > 0 and step % FLAGS.save_step == 0:
if get_rank() == 0:
ckpt_student = {
'net_model': student_sampler.module.model.state_dict(),
'x_T': x_T,
'T': student_sampler.module.T,
'time_scale': student_sampler.module.time_scale,
}
torch.save(ckpt_student, os.path.join(FLAGS.logdir, 'ckpt.pt'))
torch.distributed.barrier()
if get_rank() == 0:
pass
# writer.close()
def main(argv):
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu_id
seed = FLAGS.seed
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Not fully deterministic
FLAGS.num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
FLAGS.distributed = FLAGS.num_gpus > 1
if FLAGS.distributed:
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
# suppress annoying inception_v3 initialization warning
warnings.simplefilter(action='ignore', category=FutureWarning)
train()
if __name__ == '__main__':
app.run(main)