Skip to content

Commit 2420100

Browse files
committed
Collaborative Filtering
1 parent 9017262 commit 2420100

15 files changed

+588844
-1
lines changed

ML0101EN-RecSys-Content-Based-movies-py-v1.ipynb

Lines changed: 1477 additions & 0 deletions
Large diffs are not rendered by default.

README.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -530,4 +530,8 @@ g)
530530
### Finding the recommendation
531531
![finding](images/findingrecommendation.png)
532532
### Comme back to recommended
533-
![choosepattern](images/choosepattern.png)
533+
![choosepattern](images/choosepattern.png)
534+
535+
536+
### Collaborative Filtering
537+
![collaborative filtering](images/collaborativefiltering.png)

et --hard HEAD^

Lines changed: 220 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,220 @@
1+
e666daf dataset
2+
50da0ec en_Content-Based Recommender Systems.txt
3+
7362c77 Comme back to recommended
4+
ad28b25 Finding the recommendation
5+
b208dc8 Candidate movies for recommendation
6+
1268377 Weighing the genres
7+
b072124 Content-based recommender systems
8+
167ca13 en_Intro to Recommender Systems.txt
9+
dcd0311 Implementing recommender systems
10+
89fe206 Two types of recommender systems
11+
47b81ef Advantage of recommender systems
12+
93c275f Applications
13+
ed3eb85 What are recommender systems ?
14+
6e3dbb6 Learning Objectives
15+
36e1a83 exams 4 PNG
16+
521d474 dataset weather-stations20140101-20141231
17+
fcc85e0 en_DBSCAN Clustering
18+
7866f6e Adventage of DBSCAN
19+
c128df1 DBSCAN algorithm - clusters ?
20+
5dbe439 DBSCAN algorithm - outliers ?
21+
b038d4c DBSCAN algorithm - border point ?
22+
f4b8a69 DBSCAN algorithm - core point ?
23+
cbc7589 How DBSCAN works
24+
ecd690e WHat is DBSCAN ?
25+
29dc068 DBSCAN for class identification
26+
296a6b8 K-means vs. density-based clustering'
27+
069aa92 Density-based clustering
28+
4dc32ff hierarchical clustering model
29+
b5cc0aa dataset of hierachical algorithm
30+
9b3817d en_More on Hierarchical Clustering
31+
85ef8de Hierarchical clustering vs. K-means
32+
22bc6fa Adventages vs. disadventages
33+
156d43b Distance between clusters
34+
36c6745 How can calculate Distance
35+
8e1da03 Similarity / Distance
36+
1b88075 Agglomerative algorithm
37+
5d5d7fa en_Hierarchical Clustering
38+
02c954e Hierarchical clustering
39+
77b4ac0 Agglomerative clustering
40+
50c98b0 Hierarchical clustering
41+
4f3b10d lab k-means
42+
28f1912 Cust_Segmentation dataset
43+
b5dd0df en_More on K-Means
44+
27f7448 K-Means recap
45+
0daa9d3 Choosing k
46+
2b65654 K-Means accuracy
47+
cd07f38 K-Means clustering algorithm
48+
de74ce2 en_K-Means Clustering
49+
f68195e K-Means clustering - repeat
50+
d9df602 K-Means clustering - compute new centroids
51+
266ca9e K-Means clustering - asign to centroid
52+
5a9e490 K-Means clustering - calculate the distance
53+
8dfd73c K-Means clustering - initialize K
54+
97b3012 How does K-means clustering work ?
55+
0b882ad Multi-dimensional similarity / distance
56+
3ea5290 2-dimensional similarity / distance
57+
d7af4e5 1-dimensional similarity / distance
58+
0611c21 Determine the simalarity or dissimilarity
59+
4146f5d K-means algorithms
60+
8675287 What is K-means clustering ?
61+
592e47b en_Intro to Clustering
62+
ecc6089 Clustering algorithms
63+
40d54cc Why clustering ?
64+
19e72bc Clustering application
65+
23f1430 Clustering vs classification
66+
0aa8ee6 What is clustering ?
67+
311eb09 Clustering for segmentation
68+
4cbf033 Module 4 - Learning Objectives
69+
f254820 lab SVM
70+
7c0d98a dataset svm
71+
152d88d en_Support Vector Machine (SVM)
72+
24a524b SVM applications
73+
cf3efe3 Pros and const of SVM
74+
56cada3 Using SVM to find the hyperplane
75+
a107b0d Data transformation
76+
683a25c What is SVM ?
77+
ba67a1c Classification with SVM
78+
268c357 lab
79+
f39af4a Training algorithm recap
80+
e6edf1b Using gradient descent to minimizing the cost
81+
b48bcbd Minimizing the cost function of the model
82+
ca15971 Logistic regression cost function
83+
a522870 Plotting cost function of the model
84+
b5cb282 General cost function
85+
2e1e265 Logistic Regression vs Linear Regression
86+
d37124a The training process
87+
812179e Clarification customer churn model
88+
a05f559 The problem with using linear regression
89+
fba4655 Linear regression classification problems ?
90+
437ffb7 Predicting churn using linear regression
91+
10bf03b Predicting customer income
92+
d7b156c en_Intro to Logistic Regression
93+
642c23f Building a model for customer churn
94+
4684c31 When is logistic regression suitables ?
95+
96a5ff7 Logistic regression applications
96+
c2f51f9 What is logistic regression ?
97+
fe3bd29 labo decision tree
98+
080375a dataset
99+
96f243b Building Decision Trees
100+
411cd7f Correct way to build a decision tree
101+
fec0e8e Calculating information
102+
8fe4d60 What is information gain ?
103+
431bac9 Which attribute is the best ?
104+
60e6c5b What about 'Sexe' ?
105+
bffd79f Is 'Cholesterol' the best attribute ?
106+
7468586 With attribute is the best one to use ?
107+
3537598 Entropy
108+
a2db01e Which attribute is the best attribute ?
109+
2c318fc How to build decision tree
110+
9cc278a en_Intro to Decision Trees
111+
720e74c Decision tree learning algorithm
112+
6bf5b15 Building a decision tree with the training set
113+
2d225ed What is decision tree ?
114+
ca65277 lab module 3
115+
198fe54 dataset teleCust1000t
116+
eeae08a en_Evaluation Metrics in Classification
117+
941915b Log Loss
118+
73c97ba F1-score
119+
c6b5d97 Jaccard index
120+
3466ecb Classification accuracy
121+
249f976 en_K-Nearest Neighbors
122+
9de6705 Computing continuous target using KNN
123+
54198b8 What is the best value of K for KNN ?
124+
3d12680 multi-dimensional space
125+
dff3faa 1 -dimensional space
126+
f668bbc The K-Nearest Neighbors algorithm
127+
729d6b3 What is K-Nearest Neighbor ( or KNN ) ?
128+
427136f Determining the class unsing 5 KNNs
129+
5adcf5d Determining the class unsing 1st KNN
130+
42a0b43 Intro to KNN
131+
8ab360c en_Intro to Classification
132+
39c4681 Classification algorithms in machine learning
133+
c6897a2 Classification applications
134+
95642d4 Classification use cases
135+
5b87669 Example of multi-class classification
136+
3d680fe How does classification work ?
137+
611a135 What is classification ?
138+
28a9f35 Learning Objectives
139+
0209858 exams 2 PDF
140+
add4ec6 exams 2
141+
4f4ab15 lab 3
142+
aaaf77e dataset lab 3
143+
f216c6a Non-Linear Regression
144+
a2b876d Linear vs non-linear regression
145+
e611195 What is non-polynomial regression ?
146+
dcd7032 What is polynomial regression ?
147+
e052f08 Different types of regression
148+
58bae3b Should we use linear regression ?
149+
5b0d5c9 en_Evaluation Metrics in Regression Models
150+
c8ac73e What is an error of the model ?
151+
f2ece35 Regression accuracy
152+
40268ef en_Model Evaluation in Regression Models
153+
7208ca3 How to use K-fold cross-validation ?
154+
18d04c6 Train/Test split evaluation approch
155+
7edc812 What is training & out-of-sample accuracy ?
156+
10cbe3e Train and test on the same dataset
157+
a842a08 Calculating the accuracy of a model
158+
3609484 Best approach for most accurate result ?
159+
66488b4 Model evaluation approaches
160+
b6c7a7a en_Multiple Linear Regression
161+
8841790 A&A - on multiple linear regression
162+
0c17ce5 Making prediction with multiple linear regression
163+
d385213 Estimating multiple linear regression parameters
164+
382647f Using MSE to expose the errors in the model
165+
c56953a Predicting continuous values with multiple linear regression
166+
98d47cc Examples of multiple linear regression
167+
78a64dc Lab2 file python
168+
d77589d original dataset
169+
a0e0c11 dataset 2
170+
3a62025 dataset 1
171+
0acb287 en_Simple Linear Regression
172+
f227527 Pros of linear regression
173+
0e9519c Predictions with linear regression
174+
bc1b902 Estimating the parameters
175+
aab2830 How to find the best fit ?
176+
342e944 Linear regression model representation
177+
258dd76 How does linear regression works ?
178+
5859450 Linear regression topology
179+
581d536 Using linear regression to predict continuous values
180+
b8ff17c Introduction to Regression
181+
e918744 Application of regression
182+
36f0494 Application of regression
183+
b6fd78b Types of regression
184+
4f26097 What is a regression model ?
185+
39b293d What is regression ?
186+
bf634d4 Learning Objectives
187+
3dcd73c exams module 1
188+
09c6346 Supervised vs Unsupervised
189+
69b824b Supervised vs unsupervised learning
190+
dca26d7 What is clustering ?
191+
14c2b0c What is unsupervised learning
192+
b498cf1 What is regression ?
193+
88eb818 What is classification ?
194+
4e7691f Type of supervised learning
195+
f877c8e Teaching the model with labeled data
196+
dac6089 What is supervised learning
197+
4c3423a Python for Machine Learning
198+
2c87e26 Scikit-learn functions
199+
3e504b7 More about scikit-learn
200+
3c255e8 Python libraries for machine learning
201+
4e74fe3 intro ML
202+
2ce1ac9 intro ML
203+
812658d let's started ml
204+
5e4e8a5 difference between ai, ml and deep learning
205+
93dda22 Major machine learning techniques
206+
abc3926 Examples of machine learning
207+
f525bd3 How machine learning works ?
208+
26f0337 What is machine learning
209+
90a1676 Learning Objectives
210+
77eaaf5 Final Exam
211+
8628b48 Module 5 - Recommender Systems
212+
5b38937 Module 4 - Clustering
213+
4dfb00b Module 3 - Classification
214+
c8a0fcc Module 2 - Regression
215+
6ac0366 Module 1 - Machine Learning
216+
2855658 les algorithmes
217+
618382a Learning Objectives
218+
f3cfa46 welcome
219+
89cdaba welcome
220+
c3fe49c Initial commit

images/challenges.png

323 KB
Loading

images/collaborativefiltering.png

484 KB
Loading

images/collaborativefiltering2.png

791 KB
Loading

images/coolaborativefiltering.png

791 KB
Loading

images/coolaborativefiltering2.png

791 KB
Loading

images/createdweighted.png

431 KB
Loading

images/createdweighted2.png

402 KB
Loading

0 commit comments

Comments
 (0)