forked from jzbontar/mc-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBCECriterion2.lua
67 lines (46 loc) · 1.55 KB
/
BCECriterion2.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
local BCECriterion2, parent = torch.class('nn.BCECriterion2', 'nn.Criterion')
local eps = 1e-12
function BCECriterion2:__init()
parent.__init(self)
self.sizeAverage = true
end
function BCECriterion2:updateOutput(input, target)
-- log(input) * target + log(1 - input) * (1 - target)
self.term1 = self.term1 or input.new()
self.term2 = self.term2 or input.new()
self.term3 = self.term3 or input.new()
self.term1:resizeAs(input)
self.term2:resizeAs(input)
self.term3:resizeAs(input)
self.term1:fill(1):add(-1,target)
self.term2:fill(1):add(-1,input):add(eps):log():cmul(self.term1)
self.term3:copy(input):add(eps):log():cmul(target)
self.term3:add(self.term2)
if self.sizeAverage then
self.term3:div(target:nElement())
end
self.output = - self.term3:sum()
return self.output
end
function BCECriterion2:updateGradInput(input, target)
-- target / input - (1 - target) / (1 - input)
self.term1 = self.term1 or input.new()
self.term2 = self.term2 or input.new()
self.term3 = self.term3 or input.new()
self.term1:resizeAs(input)
self.term2:resizeAs(input)
self.term3:resizeAs(input)
self.term1:fill(1):add(-1,target)
self.term2:fill(1):add(-1,input)
self.term2:add(eps)
self.term1:cdiv(self.term2)
self.term3:copy(input):add(eps)
self.gradInput:resizeAs(input)
self.gradInput:copy(target):cdiv(self.term3)
self.gradInput:add(-1,self.term1)
if self.sizeAverage then
self.gradInput:div(target:nElement())
end
self.gradInput:mul(-1)
return self.gradInput
end