-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_stuff.py
78 lines (65 loc) · 2.48 KB
/
llm_stuff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from datetime import datetime
import streamlit as st
from langchain import LLMChain
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langsmith.client import Client
from streamlit_feedback import streamlit_feedback
_DEFAULT_SYSTEM_PROMPT = "You are a helpful chatbot."
def get_langsmith_client():
return Client(
api_key=st.session_state.langsmith_api_key,
)
def get_memory() -> ConversationBufferMemory:
return ConversationBufferMemory(
chat_memory=StreamlitChatMessageHistory(key="langchain_messages"),
return_messages=True,
memory_key="chat_history",
)
def get_llm_chain(
memory: ConversationBufferMemory,
system_prompt: str = _DEFAULT_SYSTEM_PROMPT,
temperature: float = 0.7,
) -> LLMChain:
"""Return a basic LLMChain with memory."""
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system_prompt + "\nIt's currently {time}.",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}"),
],
).partial(time=lambda: str(datetime.now()))
llm = ChatOpenAI(
temperature=temperature,
streaming=True,
openai_api_key=st.session_state.openai_api_key,
)
return LLMChain(prompt=prompt, llm=llm, memory=memory or get_memory())
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
def feedback_component(client):
scores = {"😀": 1, "🙂": 0.75, "😐": 0.5, "🙁": 0.25, "😞": 0}
if feedback := streamlit_feedback(
feedback_type="faces",
optional_text_label="[Optional] Please provide an explanation",
key=f"feedback_{st.session_state.run_id}",
):
score = scores[feedback["score"]]
feedback = client.create_feedback(
st.session_state.run_id,
feedback["type"],
score=score,
comment=feedback.get("text", None),
)
st.session_state.feedback = {"feedback_id": str(feedback.id), "score": score}
st.toast("Feedback recorded!", icon="📝")