forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deconvolution1d.cpp
199 lines (169 loc) · 6.13 KB
/
test_deconvolution1d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int test_deconvolution1d(int w, int h, int outh, int kernel, int dilation, int stride, int pad, int bias, int output_pad_right, int output_w)
{
ncnn::Mat a = RandomMat(w, h);
if (output_w > 0 && pad != -233 && pad != -234)
{
pad = -233;
}
ncnn::ParamDict pd;
pd.set(0, outh);
pd.set(1, kernel);
pd.set(2, dilation);
pd.set(3, stride);
pd.set(4, pad);
pd.set(5, bias);
pd.set(6, outh * h * kernel);
int activation_type = RAND() % 5; // 0 1 2 3 4
ncnn::Mat activation_params(2);
activation_params[0] = RandomFloat(-1, 0); // alpha
activation_params[1] = RandomFloat(0, 1); // beta
pd.set(9, activation_type);
pd.set(10, activation_params);
pd.set(18, output_pad_right);
pd.set(20, output_w);
std::vector<ncnn::Mat> weights(2);
weights[0] = RandomMat(outh * h * kernel);
weights[1] = RandomMat(outh);
int ret = test_layer("Deconvolution1D", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_deconvolution1d failed w=%d h=%d outh=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f] output_pad_right=%d output_w=%d\n", w, h, outh, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1], output_pad_right, output_w);
}
return ret;
}
static int test_deconvolution1d_0()
{
static const int kdsp[16][4] = {
{1, 1, 1, 0},
{1, 1, 2, 0},
{2, 1, 1, 1},
{2, 1, 2, -233},
{3, 1, 1, 1},
{3, 1, 2, 1},
{3, 2, 1, 1},
{4, 1, 1, -233},
{4, 1, 2, -234},
{4, 2, 1, -234},
{5, 1, 1, 2},
{5, 1, 2, 2},
{5, 2, 2, 2},
{7, 1, 1, 3},
{7, 1, 2, 3},
{7, 2, 1, -233},
};
for (int i = 0; i < 16; i++)
{
const int k = kdsp[i][0];
const int d = kdsp[i][1];
const int s = kdsp[i][2];
const int p = kdsp[i][3];
int ret = 0
|| test_deconvolution1d(9, 1, 1, k, d, s, p, 1, 0, 0)
|| test_deconvolution1d(9, 4, 13, k, d, s, p, 0, 1, 7)
|| test_deconvolution1d(9, 13, 4, k, d, s, p, 1, 1, 0)
|| test_deconvolution1d(9, 4, 8, k, d, s, p, 0, 0, 0)
|| test_deconvolution1d(9, 8, 4, k, d, s, p, 1, 0, 7)
|| test_deconvolution1d(9, 8, 13, k, d, s, p, 0, 2, 0)
|| test_deconvolution1d(9, 13, 8, k, d, s, p, 1, 2, 0)
|| test_deconvolution1d(9, 16, 16, k, d, s, p, 0, 0, 7);
if (ret != 0)
return -1;
}
return 0;
}
static int test_deconvolution1d_dynamic(int w, int h, int outh, int kernel, int dilation, int stride, int pad, int bias, int output_pad_right, int output_w)
{
ncnn::Mat a = RandomMat(w, h);
if (output_w > 0 && pad != -233 && pad != -234)
{
pad = -233;
}
ncnn::ParamDict pd;
pd.set(0, 0);
pd.set(1, 0);
pd.set(2, dilation);
pd.set(3, stride);
pd.set(4, pad);
pd.set(5, bias);
pd.set(6, 0);
pd.set(28, 1); // dynamic weight
int activation_type = RAND() % 5; // 0 1 2 3 4
ncnn::Mat activation_params(2);
activation_params[0] = RandomFloat(-1, 0); // alpha
activation_params[1] = RandomFloat(0, 1); // beta
pd.set(9, activation_type);
pd.set(10, activation_params);
pd.set(18, output_pad_right);
pd.set(20, output_w);
std::vector<ncnn::Mat> as(bias ? 3 : 2);
as[0] = a;
as[1] = RandomMat(kernel, outh, h);
if (bias)
as[2] = RandomMat(outh);
std::vector<ncnn::Mat> weights(0);
int ret = test_layer("Deconvolution1D", pd, weights, as);
if (ret != 0)
{
fprintf(stderr, "test_deconvolution1d_dynamic failed w=%d h=%d outh=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f] output_pad_right=%d output_w=%d\n", w, h, outh, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1], output_pad_right, output_w);
}
return ret;
}
static int test_deconvolution1d_1()
{
static const int kdsp[16][4] = {
{1, 1, 1, 0},
{1, 1, 2, 0},
{2, 1, 1, 1},
{2, 1, 2, -233},
{3, 1, 1, 1},
{3, 1, 2, 1},
{3, 2, 1, 1},
{4, 1, 1, -233},
{4, 1, 2, -234},
{4, 2, 1, -234},
{5, 1, 1, 2},
{5, 1, 2, 2},
{5, 2, 2, 2},
{7, 1, 1, 3},
{7, 1, 2, 3},
{7, 2, 1, -233},
};
for (int i = 0; i < 16; i++)
{
const int k = kdsp[i][0];
const int d = kdsp[i][1];
const int s = kdsp[i][2];
const int p = kdsp[i][3];
int ret = 0
|| test_deconvolution1d_dynamic(9, 1, 1, k, d, s, p, 1, 0, 0)
|| test_deconvolution1d_dynamic(9, 4, 13, k, d, s, p, 0, 1, 7)
|| test_deconvolution1d_dynamic(9, 13, 4, k, d, s, p, 1, 1, 0)
|| test_deconvolution1d_dynamic(9, 4, 8, k, d, s, p, 0, 0, 0)
|| test_deconvolution1d_dynamic(9, 8, 4, k, d, s, p, 1, 0, 7)
|| test_deconvolution1d_dynamic(9, 8, 13, k, d, s, p, 0, 2, 0)
|| test_deconvolution1d_dynamic(9, 13, 8, k, d, s, p, 1, 2, 0)
|| test_deconvolution1d_dynamic(9, 16, 16, k, d, s, p, 0, 0, 7);
if (ret != 0)
return -1;
}
return 0;
}
int main()
{
SRAND(7767517);
return test_deconvolution1d_0() || test_deconvolution1d_1();
}