-
Notifications
You must be signed in to change notification settings - Fork 22
/
iplib.go
617 lines (543 loc) · 16.8 KB
/
iplib.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/*
Package iplib provides enhanced tools for working with IP networks and
addresses. These tools are built upon and extend the generic functionality
found in the Go "net" package.
The main library comes in two parts: a series of utilities for working with
net.IP (sort, increment, decrement, delta, compare, convert to binary or hex-
string, convert between net.IP and integer) and an enhancement of net.IPNet
called iplib.Net that can calculate the first and last IPs of a block as well
as enumerating the block into []net.IP, incrementing and decrementing within
the boundaries of the block and creating sub- or super-nets of it.
For most features iplib exposes a v4 and a v6 variant to handle each network
properly, but in all cases there is a generic function that handles any IP and
routes between them. One caveat to this is those functions that require or
return an integer value representing the address, in these cases the IPv4
variants take int32 as input while the IPv6 functions require uint128.Uint128
in order to work with the 128bits of address.
For managing the complexity of IPv6 address-spaces, this library adds a new
mask, called a Hostmask, as an optional constraint on iplib.Net6 networks,
please see the type-documentation for more information on using it.
For functions where it is possible to exceed the address-space the rule is
that underflows return the version-appropriate all-zeroes address while
overflows return the all-ones.
There are also two submodules under iplib: the iplib/iid module contains
functions for generating RFC 7217-compliant IPv6 Interface ID addresses, and
iplib/iana imports the IANA IP Special Registries and exposes functions for
comparing IP addresses against those registries to determine if the IP is part
of a special reservation (for example RFC 1918 private networks or the RFC
3849 documentation network).
*/
package iplib
import (
"bytes"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"math/big"
"net"
"strings"
"lukechampine.com/uint128"
)
const (
// MaxIPv4 is the max size of a uint32, also the IPv4 address space
MaxIPv4 uint32 = 1<<32 - 1
// IP4Version is the label returned by IPv4 addresses
IP4Version = 4
// IP6Version is the label returned by IPv6 addresses
IP6Version = 6
)
// Errors that may be returned by functions in this package
var (
ErrAddressOutOfRange = errors.New("address is not a part of this netblock")
ErrBadMaskLength = errors.New("illegal mask length provided")
ErrBroadcastAddress = errors.New("address is the broadcast address of this netblock (and not considered usable)")
ErrNetworkAddress = errors.New("address is the network address of this netblock (and not considered usable)")
ErrNoValidRange = errors.New("no netblock can be found between the supplied values")
)
// ByIP implements sort.Interface for net.IP addresses
type ByIP []net.IP
// Len implements sort.interface Len(), returning the length of the
// ByIP array
func (bi ByIP) Len() int {
return len(bi)
}
// Swap implements sort.interface Swap(), swapping two elements in our array
func (bi ByIP) Swap(a, b int) {
bi[a], bi[b] = bi[b], bi[a]
}
// Less implements sort.interface Less(), given two elements in the array it
// returns true if the LHS should sort before the RHS. For details on the
// implementation, see CompareIPs()
func (bi ByIP) Less(a, b int) bool {
val := CompareIPs(bi[a], bi[b])
return val == -1
}
// ARPAToIP takes a strings containing an ARPA domain and returns the
// corresponding net.IP
func ARPAToIP(s string) net.IP {
if strings.HasSuffix(s, ".ip6.arpa.") {
return ARPAToIP6(s)
}
return ARPAToIP4(s)
}
// ARPAToIP4 takes a string containing an IPv4 ARPA domain and returns the
// corresponding net.IP
func ARPAToIP4(s string) net.IP {
buf := strings.Split(s, ".")
if len(buf) != 6 {
return nil
}
if buf[4] != "in-addr" || buf[5] != "arpa" {
return nil
}
return net.ParseIP(fmt.Sprintf("%s.%s.%s.%s", buf[3], buf[2], buf[1], buf[0]))
}
// ARPAToIP6 takes a string containing an IPv6 ARPA domain and returns the
// corresponding net.IP
func ARPAToIP6(s string) net.IP {
if !strings.HasSuffix(s, ".ip6.arpa") {
return nil
}
s = strings.TrimSuffix(s, ".ip6.arpa")
s = strings.Replace(s, ".", "", -1)
size := len(s)
if size != 32 {
return nil
}
// i am pretty sure we don't need to consider runes here
buf := ""
for _, c := range s {
buf = string(c) + buf
}
h, err := hex.DecodeString(buf)
if err != nil {
return nil
}
return h
}
// BigintToIP6 converts a big.Int to an ip6 address and returns it as a net.IP
func BigintToIP6(z *big.Int) net.IP {
b := z.Bytes()
if len(b) > 16 {
return generateNetLimits(6, 255)
}
if v := z.Sign(); v <= 0 {
return generateNetLimits(6, 0)
}
// for cases where the resulting []byte isn't long enough
if len(b) < 16 {
for i := 15 - len(b); i >= 0; i-- {
b = append([]byte{0}, b...)
}
}
return b
}
// CompareIPs is just a thin wrapper around bytes.Compare, but is here for
// completeness as this is a good way to compare two IP objects. Since it uses
// bytes.Compare the return value is identical: 0 if a==b, -1 if a<b, 1 if a>b
func CompareIPs(a, b net.IP) int {
return bytes.Compare(a.To16(), b.To16())
}
// CompareNets compares two iplib.Net objects by evaluating their network
// address (the first address in a CIDR range) and, if they're equal,
// comparing their netmasks (smallest wins). This means that if a network is
// compared to one of its subnets, the enclosing network sorts first.
func CompareNets(a, b Net) int {
val := bytes.Compare(a.IP(), b.IP())
if val != 0 {
return val
}
am, _ := a.Mask().Size()
bm, _ := b.Mask().Size()
if am == bm {
return 0
}
if am < bm {
return -1
}
return 1
}
// CopyIP creates a new net.IP object containing the same data as the supplied
// net.IP (e.g. creates a new array and duplicates the contents)
func CopyIP(ip net.IP) net.IP {
xip := make([]byte, len(ip))
copy(xip, ip)
return xip
}
// DecrementIPBy returns a net.IP that is lower than the supplied net.IP by
// the supplied integer value. If you underflow the IP space it will return
// the zero address.
func DecrementIPBy(ip net.IP, count uint32) net.IP {
if EffectiveVersion(ip) == IP4Version {
return DecrementIP4By(ip, count)
}
z := uint128.From64(uint64(count))
return DecrementIP6By(ip, z)
}
// DecrementIP4By returns a v4 net.IP that is lower than the supplied net.IP
// by the supplied integer value. If you underflow the IP space it will return
// 0.0.0.0
func DecrementIP4By(ip net.IP, count uint32) net.IP {
i := IP4ToUint32(ip)
d := i - count
// check for underflow
if d > i {
return generateNetLimits(4, 0)
}
return Uint32ToIP4(d)
}
// DecrementIP6By returns a net.IP that is lower than the supplied net.IP by
// the supplied integer value. If you underflow the IP space it will return
// ::
func DecrementIP6By(ip net.IP, count uint128.Uint128) net.IP {
z := IP6ToUint128(ip)
nz := z.SubWrap(count)
if nz.Cmp(z) > 0 {
return generateNetLimits(6, 0)
}
return Uint128ToIP6(nz)
}
// DeltaIP takes two net.IP's as input and returns the difference between them
// up to the limit of uint32.
func DeltaIP(a, b net.IP) uint32 {
if EffectiveVersion(a) == IP4Version && EffectiveVersion(b) == IP4Version {
return DeltaIP4(a, b)
}
m := uint128.From64(uint64(MaxIPv4))
z := DeltaIP6(a, b)
if v := z.Cmp(m); v > 0 {
return MaxIPv4
}
return uint32(z.Lo)
}
// DeltaIP4 takes two net.IP's as input and returns a total of the number of
// addresses between them, up to the limit of uint32.
func DeltaIP4(a, b net.IP) uint32 {
ai := IP4ToUint32(a)
bi := IP4ToUint32(b)
if ai > bi {
return ai - bi
}
return bi - ai
}
// DeltaIP6 takes two net.IP's as input and returns a total of the number of
// addressed between them as uint128.Uint128 . It will technically work on v4
// as well
func DeltaIP6(a, b net.IP) uint128.Uint128 {
ai := IP6ToUint128(a)
bi := IP6ToUint128(b)
if ai.Cmp(bi) > 0 {
return ai.Sub(bi)
}
return bi.Sub(ai)
}
// EffectiveVersion returns 4 if the net.IP either contains a v4 address or if
// it contains the v4-encapsulating v6 address range ::ffff. Note that the
// second example below is a v6 address but reports as v4 because it is in the
// 4in6 block. This mirrors how Go's `net` package would treat the address
func EffectiveVersion(ip net.IP) int {
if ip == nil {
return 0
}
if len(ip) == 4 {
return IP4Version
}
if Is4in6(ip) {
return IP4Version
}
return IP6Version
}
// ExpandIP6 takes a net.IP containing an IPv6 address and returns a string of
// the address fully expanded
func ExpandIP6(ip net.IP) string {
var h []byte
var s string
h = make([]byte, hex.EncodedLen(len(ip.To16())))
hex.Encode(h, ip)
for i, c := range h {
if i%4 == 0 {
s = s + ":"
}
s = s + string(c)
}
return s[1:]
}
// ForceIP4 takes a net.IP containing an RFC4291 IPv4-mapped IPv6 address and
// returns only the encapsulated v4 address.
func ForceIP4(ip net.IP) net.IP {
if len(ip) == 16 {
return ip[12:]
}
return ip
}
// HexStringToIP converts a hexadecimal string to an IP address. If the given
// string cannot be converted nil is returned. Input strings may contain '.'
// or ':'
func HexStringToIP(s string) net.IP {
normalize := func(c rune) rune {
if !strings.ContainsRune(":.", c) {
return c
}
return -1
}
s = strings.Map(normalize, s)
if len(s) != 8 && len(s) != 32 {
return nil
}
h, err := hex.DecodeString(s)
if err != nil {
return nil
}
return h
}
// IPToARPA takes a net.IP as input and returns a string of the version-
// appropriate ARPA DNS name
func IPToARPA(ip net.IP) string {
if EffectiveVersion(ip) == IP4Version {
return IP4ToARPA(ip)
}
return IP6ToARPA(ip)
}
// IP4ToARPA takes a net.IP containing an IPv4 address and returns a string of
// the address represented as dotted-decimals in reverse-order and followed by
// the IPv4 ARPA domain "in-addr.arpa"
func IP4ToARPA(ip net.IP) string {
ip = ForceIP4(ip)
if ip == nil {
return ""
}
return fmt.Sprintf("%d.%d.%d.%d.in-addr.arpa", ip[3], ip[2], ip[1], ip[0])
}
// IP6ToARPA takes a net.IP containing an IPv6 address and returns a string of
// the address represented as a sequence of 4-bit nibbles in reverse order and
// followed by the IPv6 ARPA domain "ip6.arpa"
func IP6ToARPA(ip net.IP) string {
var domain = "ip6.arpa"
var h []byte
var s string
h = make([]byte, hex.EncodedLen(len(ip)))
hex.Encode(h, ip)
for i := len(h) - 1; i >= 0; i-- {
s = s + string(h[i]) + "."
}
return s + domain
}
// IPToBigint converts a net.IP to big.Int.
func IPToBigint(ip net.IP) *big.Int {
z := new(big.Int)
z.SetBytes(ip)
return z
}
// IPToBinarySlice returns the given net.IP as a []byte whose
// values are the binary representation of the IP
func IPToBinarySlice(ip net.IP) []byte {
var bits []byte
if EffectiveVersion(ip) == 4 {
ip = ForceIP4(ip)
}
for _, octet := range ip {
for i := 7; i >= 0; i-- {
bit := (octet >> i) & 1
bits = append(bits, bit)
}
}
return bits
}
// IPToBinaryString returns the given net.IP as a binary string
func IPToBinaryString(ip net.IP) string {
var sa []string
if len(ip) > 4 && EffectiveVersion(ip) == 4 {
ip = ForceIP4(ip)
}
for _, b := range ip {
sa = append(sa, fmt.Sprintf("%08b", b))
}
return strings.Join(sa, ".")
}
// IPToHexString returns the given net.IP as a hexadecimal string. This is the
// default stringer format for v6 net.IP
func IPToHexString(ip net.IP) string {
if EffectiveVersion(ip) == IP4Version {
return hex.EncodeToString(ForceIP4(ip))
}
return ip.String()
}
// IP4ToUint32 converts a net.IPv4 to a uint32
func IP4ToUint32(ip net.IP) uint32 {
if EffectiveVersion(ip) != IP4Version {
return 0
}
return binary.BigEndian.Uint32(ForceIP4(ip))
}
// IP6ToUint64 converts a net.IPv6 to a uint64, but only the first 64bits of
// address are considered meaningful (any information in the last 64bits will
// be lost). To work with entire IPv6 addresses use IP6ToUint128()
func IP6ToUint64(ip net.IP) uint64 {
if EffectiveVersion(ip) != IP6Version {
return 0
}
ipn := make([]byte, 8)
copy(ipn, ip[:8])
return binary.BigEndian.Uint64(ipn)
}
// IP6ToUint128 converts a net.IPv6 to a uint128.Uint128
func IP6ToUint128(ip net.IP) uint128.Uint128 {
return uint128.FromBytesBE(ip)
}
// IncrementIPBy returns a net.IP that is greater than the supplied net.IP by
// the supplied integer value. If you overflow the IP space it will return
// the all-ones address
func IncrementIPBy(ip net.IP, count uint32) net.IP {
if EffectiveVersion(ip) == IP4Version {
return IncrementIP4By(ip, count)
}
// TODO this needs to be fixed for the IPv4 case!!!!
z := uint128.From64(uint64(count))
return IncrementIP6By(ip, z)
}
// IncrementIP4By returns a v4 net.IP that is greater than the supplied
// net.IP by the supplied integer value. If you overflow the IP space it
// will return 255.255.255.255
func IncrementIP4By(ip net.IP, count uint32) net.IP {
i := IP4ToUint32(ip)
d := i + count
// check for overflow
if d < i {
return generateNetLimits(4, 255)
}
return Uint32ToIP4(d)
}
// IncrementIP6By returns a net.IP that is greater than the supplied net.IP by
// the supplied integer value. If you overflow the IP space it will return the
// (meaningless in this context) all-ones address
func IncrementIP6By(ip net.IP, count uint128.Uint128) net.IP {
z := IP6ToUint128(ip)
nz := z.AddWrap(count)
if nz.Cmp(z) < 0 {
return generateNetLimits(6, 255)
}
return Uint128ToIP6(nz)
}
// Is4in6 returns true if the supplied net.IP is an IPv4 address encapsulated
// in an IPv6 address. It is very common for the net library to re-write v4
// addresses into v6 addresses prefixed 0000:0000:0000:0000:ffff. When this
// happens net.IP will have a 16-byte array but always return a v4 address (in
// fact there is no way to force it to behave as a v6 address), which has lead
// to many confused message board comments
func Is4in6(ip net.IP) bool {
if len(ip) < 16 {
return false
}
if ip[0] == 0x00 && ip[1] == 0x00 && ip[2] == 0x00 && ip[3] == 0x00 &&
ip[4] == 0x00 && ip[5] == 0x00 && ip[6] == 0x00 && ip[7] == 0x00 &&
ip[8] == 0x00 && ip[9] == 0x00 && ip[10] == 0xff && ip[11] == 0xff {
return true
}
return false
}
// IsAllOnes returns true if the supplied net.IP is the all-ones address,
// if given a 4-in-6 address this function will treat it as IPv4
func IsAllOnes(ip net.IP) bool {
if EffectiveVersion(ip) == 4 {
ip = ForceIP4(ip)
}
for _, b := range ip {
if b != 255 {
return false
}
}
return true
}
// IsAllZeroes returns true if the supplied net.IP is the all-zero address, if
// given a 4-in-6 address this function will treat it as IPv4
func IsAllZeroes(ip net.IP) bool {
if EffectiveVersion(ip) == 4 {
ip = ForceIP4(ip)
}
for _, b := range ip {
if b != 0 {
return false
}
}
return true
}
// NextIP returns a net.IP incremented by one from the input address
func NextIP(ip net.IP) net.IP {
var xip []byte
if EffectiveVersion(ip) == IP4Version {
xip = CopyIP(ForceIP4(ip))
} else {
xip = CopyIP(ip)
}
for i := len(xip) - 1; i >= 0; i-- {
xip[i]++
if xip[i] > 0 {
return xip
}
}
return ip // if we're already at the end of range, don't wrap
}
// PreviousIP returns a net.IP decremented by one from the input address
func PreviousIP(ip net.IP) net.IP {
var xip []byte
if EffectiveVersion(ip) == IP4Version {
xip = CopyIP(ForceIP4(ip))
} else {
xip = CopyIP(ip)
}
for i := len(xip) - 1; i >= 0; i-- {
xip[i]--
if xip[i] != 255 {
return xip
}
}
return ip // if we're already at beginning of range, don't wrap
}
// Uint32ToIP4 converts a uint32 to an ip4 address and returns it as a net.IP
func Uint32ToIP4(i uint32) net.IP {
ip := make([]byte, 4)
binary.BigEndian.PutUint32(ip, i)
return ip
}
// Uint64ToIP6 converts a uint64 to an IPv6 address, but only the left-most
// half of a (128bit) IPv6 address can be accessed in this way, the back half
// of the address is lost. To manipulate the entire address, see BigintToIP6()
func Uint64ToIP6(i uint64) net.IP {
ip := make([]byte, 16)
binary.BigEndian.PutUint64(ip, i)
return ip
}
// Uint128ToIP6 converts a uint128 to an IPv6 address and returns it as a
// net.IP
func Uint128ToIP6(i uint128.Uint128) net.IP {
ip := make([]byte, 16)
i.PutBytesBE(ip)
return ip
}
// Version returns 4 if the net.IP contains a v4 address. It will return 6 for
// any v6 address, including the v4-encapsulating v6 address range ::ffff.
// Contrast with EffectiveVersion above and note that in the provided example
// ForceIP4() is used because, by default, net.ParseIP() stores IPv4 addresses
// as 4in6 encapsulating v6 addresses. One consequence of which is that
// it is impossible to use a 4in6 address as a v6 address
func Version(ip net.IP) int {
if ip == nil {
return 0
}
if len(ip) == 4 {
return IP4Version
}
return IP6Version
}
func generateNetLimits(version int, filler byte) net.IP {
var b []byte
if version == IP6Version {
version = 16
}
b = make([]byte, version)
for i := range b {
b[i] = filler
}
return b
}