forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_color_describer.py
937 lines (739 loc) · 31.9 KB
/
torch_color_describer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
import copy
import itertools
import nltk.translate.bleu_score
import numpy as np
from sklearn.metrics import accuracy_score
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
import utils
from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2021"
class ColorDataset(torch.utils.data.Dataset):
"""
PyTorch dataset for contextual color describers. The primary
function of this dataset is to organize the raw data into
batches of Tensors of the appropriate shape and type. When
using this dataset with `torch.utils.data.DataLoader`, it is
crucial to supply the `collate_fn` method as the argument for
the `DataLoader.collate_fn` parameter.
Parameters
----------
color_seqs : list of lists of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of list of int
Dimension m, the number of examples. The length of each
sequence can vary.
ex_lengths : list of int
Dimension m. Each value gives the length of the corresponding
word sequence in `word_seqs`.
"""
def __init__(self, color_seqs, word_seqs, ex_lengths):
assert len(color_seqs) == len(ex_lengths)
assert len(color_seqs) == len(word_seqs)
self.color_seqs = color_seqs
self.word_seqs = word_seqs
self.ex_lengths = ex_lengths
@staticmethod
def collate_fn(batch):
"""
Function for creating batches.
Parameter
---------
batch : tuple of length 3
Contains the `color_seqs`, `word_seqs`, and `ex_lengths`,
all as lists or similar Python iterables. The function
turns them into Tensors.
Returns
-------
color_seqs : torch.FloatTensor.
The shape is `(m, n, p)` where `m` is the batch_size,
`n` is the number of colors in each context, and `p` is
the color dimensionality.
word_seqs : torch.LongTensor
This is a padded sequence, dimension (m, k), where `m` is
the batch_size and `k` is the length of the longest sequence
in the batch.
ex_lengths : torch.LongTensor
The true lengths of each sequence in `word_seqs. This will
have shape `(m, )`, where `m` is the batch_size.
targets : torch.LongTensor
This is a padded sequence, dimension (m, k-1), where `m` is
the batch_size and `k` is the length of the longest sequence
in the batch. The targets match `word_seqs` except we drop the
first symbol, as it is always START_SYMBOL. When the loss is
calculated, we compare this sequence to `word_seqs` excluding
the final character, which is always the END_SYMBOL. The result
is that each timestep t is trained to predict the symbol
at t+1.
"""
color_seqs, word_seqs, ex_lengths = zip(*batch)
# Conversion to Tensors:
color_seqs = torch.FloatTensor(color_seqs)
word_seqs = [torch.LongTensor(seq) for seq in word_seqs]
ex_lengths = torch.LongTensor(ex_lengths)
# Targets as next-word predictions:
targets = [x[1:, ] for x in word_seqs]
# Padding
word_seqs = torch.nn.utils.rnn.pad_sequence(
word_seqs, batch_first=True)
targets = torch.nn.utils.rnn.pad_sequence(
targets, batch_first=True)
return color_seqs, word_seqs, ex_lengths, targets
def __len__(self):
return len(self.color_seqs)
def __getitem__(self, idx):
return self.color_seqs[idx], self.word_seqs[idx], self.ex_lengths[idx]
class Encoder(nn.Module):
def __init__(self, color_dim, hidden_dim):
"""
Simple Encoder model based on a GRU cell.
Parameters
----------
color_dim : int
hidden_dim : int
"""
super().__init__()
self.color_dim = color_dim
self.hidden_dim = hidden_dim
self.rnn = nn.GRU(
input_size=self.color_dim,
hidden_size=self.hidden_dim,
batch_first=True)
def forward(self, color_seqs):
"""
Parameters
----------
color_seqs : torch.FloatTensor
The shape is `(m, n, p)` where `m` is the batch_size,
`n` is the number of colors in each context, and `p` is
the color dimensionality.
Returns
-------
hidden : torch.FloatTensor
These are the final hidden state of the RNN for this batch,
shape `(m, p) where `m` is the batch_size and `p` is
the color dimensionality.
"""
output, hidden = self.rnn(color_seqs)
return hidden
class Decoder(nn.Module):
def __init__(self,
vocab_size,
embed_dim,
hidden_dim,
embedding=None,
freeze_embedding=False):
"""
Simple Decoder model based on a GRU cell. The hidden
representations of the GRU are passed through a dense linear
layer, and those logits are used to train the language model
according to a softmax objective in `ContextualColorDescriber`.
Parameters
----------
vocab_size : int
embed_dim : int
hidden_dim : int
embedding : np.array or None
If `None`, a random embedding is created. If `np.array`, this
value becomes the embedding.
"""
super().__init__()
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.freeze_embedding = freeze_embedding
self.embedding = self._define_embedding(
embedding, self.vocab_size, embed_dim, self.freeze_embedding)
self.embed_dim = self.embedding.embedding_dim
self.rnn = nn.GRU(
input_size=self.embed_dim,
hidden_size=self.hidden_dim,
batch_first=True)
self.output_layer = nn.Linear(self.hidden_dim, self.vocab_size)
def forward(self, word_seqs, seq_lengths=None, hidden=None, target_colors=None):
"""
Core computation for the model.
Parameters
----------
word_seqs : torch.LongTensor
This is a padded sequence, dimension (m, k), where k is
the length of the longest sequence in the batch. The `forward`
method uses `self.get_embeddings` to mape these indices to their
embeddings.
seq_lengths : torch.LongTensor
Shape (m, ) where `m` is the number of examples in the batch.
hidden : torch.FloatTensor
Shape `(m, self.hidden_dim)`. When training, this is always the
final state of the `Encoder`. During prediction, this might be
recursively computed as the sequence is processed.
target_colors : torch.FloatTensor
Dimension (m, c), where m is the number of examples and
c is the dimensionality of the color representations.
Returns
-------
output : torch.FloatTensor
The full sequence of outputs states. When we are training, the
shape is `(m, hidden_dim, k)` to accommodate the expectations
of the loss function. During prediction, the shape is
`(m, k, hidden_dim)`. In both cases, m is the number of examples in
the batch and `k` is the maximum length of sequences in this batch.
hidden : torch.FloatTensor
The final output state of the network. Shape `(m, hidden_dim)`
where m is the number of examples in the batch.
"""
embs = self.get_embeddings(word_seqs, target_colors=target_colors)
if self.training:
# Packed sequence for performance:
embs = torch.nn.utils.rnn.pack_padded_sequence(
embs,
batch_first=True,
lengths=seq_lengths.cpu(),
enforce_sorted=False)
# RNN forward:
output, hidden = self.rnn(embs, hidden)
# Unpack:
output, seq_lengths = torch.nn.utils.rnn.pad_packed_sequence(
output, batch_first=True)
# Output dense layer to get logits:
output = self.output_layer(output)
# Drop the final element:
output = output[:, : -1, :]
# Reshape for the sake of the loss function:
output = output.transpose(1, 2)
return output, hidden
else:
output, hidden = self.rnn(embs, hidden)
output = self.output_layer(output)
return output, hidden
def get_embeddings(self, word_seqs, target_colors=None):
"""
Gets the input token representations. At present, these are
just taken directly from `self.embedding`, but `target_colors`
can be made available in case the user wants to subclass this
function to append these representations to each input token.
Parameters
----------
word_seqs : torch.LongTensor
This is a padded sequence, dimension (m, k), where k is
the length of the longest sequence in the batch.
target_colors : torch.FloatTensor
Dimension (m, c), where m is the number of examples and
c is the dimensionality of the color representations.
"""
return self.embedding(word_seqs)
@staticmethod
def _define_embedding(embedding, vocab_size, embed_dim, freeze_embedding):
if embedding is None:
emb = nn.Embedding(vocab_size, embed_dim)
emb.weight.requires_grad = not freeze_embedding
return emb
else:
embedding = torch.FloatTensor(embedding)
return nn.Embedding.from_pretrained(
embedding, freeze=freeze_embedding)
class EncoderDecoder(nn.Module):
def __init__(self, encoder, decoder):
"""
This class knits the `Encoder` and `Decoder` into a single class
that serves as the model for `ContextualColorDescriber`. This is
largely a convenience: it means that `ContextualColorDescriber`
can use a single `model` argument, and it allows us to localize
the core computations in the `forward` method of this class.
Parameters
----------
encoder : `Encoder`
decoder : `Decoder`
"""
super().__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, color_seqs, word_seqs, seq_lengths, hidden=None):
"""This is the core method for this module. It has a lot of
arguments mainly to make it easy to create subclasses of this
class that do interesting things without requring modifications
to the `fit` method of `ContextualColorDescriber`.
Parameters
----------
color_seqs : torch.FloatTensor
Dimension (m, n, p), where m is the number of examples,
n is the number of colors in each context, and p is the
dimensionality of each color.
word_seqs : torch.LongTensor
Dimension (m, k), where m is the number of examples and k
is the length of all the (padded) sequences in the batch.
seq_lengths : torch.LongTensor or None
The true lengths of the sequences in `word_seqs`. If this
is None, then we are predicting new sequences, so we will
continue predicting until we hit a maximum length or we
generate STOP_SYMBOL.
hidden : torch.FloatTensor or None
The hidden representation for each of the m examples in this
batch. If this is None, we are predicting new sequences
and so the hidden representation is computed for each timestep
during decoding.
Returns
-------
output : torch.FloatTensor
Dimension (m, k, c), where m is the number of examples, k
is the length of the sequences in this batch, and c is the
number of classes (the size of the vocabulary).
hidden : torch.FloatTensor
Dimension (m, h) where m is the number of examples and h is
the dimensionality of the hidden representations of the model.
This value is returned only when the model is in eval mode.
"""
if hidden is None:
hidden = self.encoder(color_seqs)
output, hidden = self.decoder(
word_seqs, seq_lengths=seq_lengths, hidden=hidden)
if self.training:
return output
else:
return output, hidden
class ContextualColorDescriber(TorchModelBase):
def __init__(self,
vocab,
embedding=None,
embed_dim=50,
hidden_dim=50,
freeze_embedding=False,
**base_kwargs):
"""
The primary interface to modeling contextual colors datasets.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value.
hidden_dim : int
Dimensionality of the hidden layer.
freeze_embedding : bool
If True, the embedding will be updated during training. If
False, the embedding will be frozen. This parameter applies
to both randomly initialized and pretrained embeddings.
**base_kwargs
For details, see `torch_model_base.py`.
Attributes
----------
vocab_size : int
word2index : dict
A look-up from vocab items to their indices.
index2word : dict
A look-up for indices to vocab items.
output_dim : int
Same as `vocab_size`.
start_index : int
Index of START_SYMBOL in `self.vocab`.
end_index : int
Index of END_SYMBOL in `self.vocab`.
unk_index : int
Index of UNK_SYMBOL in `self.vocab`.
loss: nn.CrossEntropyLoss(reduction="mean")
self.params: list
Extends TorchModelBase.params with names for all of the
arguments for this class to support tuning of these values
using `sklearn.model_selection` tools.
"""
super().__init__(**base_kwargs)
self.vocab = vocab
self.hidden_dim = hidden_dim
self.embedding = embedding
self.freeze_embedding = freeze_embedding
self.vocab_size = len(vocab)
self.word2index = dict(zip(self.vocab, range(self.vocab_size)))
self.index2word = dict(zip(range(self.vocab_size), self.vocab))
self.embed_dim = embed_dim
self.output_dim = self.vocab_size
self.start_index = self.vocab.index(START_SYMBOL)
self.end_index = self.vocab.index(END_SYMBOL)
self.unk_index = self.vocab.index(UNK_SYMBOL)
self.params += ['hidden_dim', 'embed_dim', 'embedding', 'freeze_embedding']
self.loss = nn.CrossEntropyLoss()
def build_dataset(self, color_seqs, word_seqs):
"""
Create a dataset from a list of color contexts and
associated utterances.
Parameters
----------
color_seqs : list of lists of color representations
We assume that each context has the same number of colors,
each with the same shape.
word_seqs : list of lists of utterances
A tokenized list of words. This method uses `self.word2index`
to turn this into a list of lists of indices.
Returns
-------
ColorDataset
"""
self.color_dim = len(color_seqs[0][0])
word_seqs = [[self.word2index.get(w, self.unk_index) for w in seq]
for seq in word_seqs]
ex_lengths = [len(seq) for seq in word_seqs]
return ColorDataset(color_seqs, word_seqs, ex_lengths)
def build_graph(self):
"""
The core computation graph. This method is called by `fit` to set
the `self.model` attribute.
Returns
-------
`EncoderDecoder` built from `Encoder` and `Decoder`
"""
encoder = Encoder(
color_dim=self.color_dim,
hidden_dim=self.hidden_dim)
decoder = Decoder(
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
embedding=self.embedding,
hidden_dim=self.hidden_dim,
freeze_embedding=self.freeze_embedding)
self.embed_dim = decoder.embed_dim
return EncoderDecoder(encoder, decoder)
def predict(self, color_seqs, max_length=20, device=None):
"""
Predict new sequences based on the color contexts in
`color_seqs`.
Parameters
----------
color_seqs : list of lists of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
max_length : int
Length of the longest sequences to create.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
list of str
"""
device = self.device if device is None else torch.device(device)
color_seqs = torch.FloatTensor(color_seqs)
color_seqs = color_seqs.to(device)
self.model.to(device)
self.model.eval()
preds = []
with torch.no_grad():
# Get the hidden representations from the color contexts:
hidden = self.model.encoder(color_seqs)
# Start with START_SYMBOL for all examples:
decoder_input = [[self.start_index]] * len(color_seqs)
decoder_input = torch.LongTensor(decoder_input)
decoder_input = decoder_input.to(device)
preds.append(decoder_input)
# Now move through the remaiming timesteps using the
# previous timestep to predict the next one:
for i in range(1, max_length):
output, hidden = self.model(
color_seqs=color_seqs,
word_seqs=decoder_input,
seq_lengths=None,
hidden=hidden)
# Always take the highest probability token to
# be the prediction:
p = output.argmax(2)
preds.append(p)
decoder_input = p
# Convert all the predictions from indices to elements of
# `self.vocab`:
preds = torch.cat(preds, axis=1)
preds = [self._convert_predictions(p) for p in preds]
self.model.to(self.device)
return preds
def _convert_predictions(self, pred):
rep = []
for i in pred:
i = i.item()
rep.append(self.index2word[i])
if i == self.end_index:
return rep
return rep
def predict_proba(self, color_seqs, word_seqs, device=None):
"""
Calculate the predicted probabilties of the sequences in
`word_seqs` given the color contexts in `color_seqs`.
Parameters
----------
color_seqs : list of lists of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of list of int
Dimension m, the number of examples. The length of each
sequence can vary.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
list of lists of predicted probabilities. In other words,
for each example, at each timestep, there is a probability
distribution over the entire vocabulary.
"""
device = self.device if device is None else torch.device(device)
dataset = self.build_dataset(color_seqs, word_seqs)
dataloader = self._build_dataloader(dataset, shuffle=False)
self.model.to(device)
self.model.eval()
softmax = nn.Softmax(dim=2)
start_probs = np.zeros(self.vocab_size)
start_probs[self.start_index] = 1.0
all_probs = []
with torch.no_grad():
for batch_colors, batch_words, batch_lens, targets in dataloader:
batch_colors = batch_colors.to(device)
batch_words = batch_words.to(device)
batch_lens = batch_lens.to(device)
output, _ = self.model(
color_seqs=batch_colors,
word_seqs=batch_words,
seq_lengths=batch_lens)
probs = softmax(output)
probs = probs.cpu().numpy()
probs = np.insert(probs, 0, start_probs, axis=1)
all_probs += [p[: n] for p, n in zip(probs, batch_lens)]
self.model.to(self.device)
return all_probs
def perplexities(self, color_seqs, word_seqs, device=None):
"""
Compute the perplexity of each sequence in `word_seqs`
given `color_seqs`. For a sequence of conditional probabilities
p1, p2, ..., pN, the perplexity is calculated as
(p1 * p2 * ... * pN)**(-1/N)
Parameters
----------
color_seqs : list of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of list of int
Dimension m, the number of examples, and the length of
each sequence can vary.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
list of float
"""
probs = self.predict_proba(color_seqs, word_seqs, device=device)
scores = []
for pred, seq in zip(probs, word_seqs):
# Get the probabilities corresponding to the path `seq`:
s = np.array([t[self.word2index.get(w, self.unk_index)]
for t, w in zip(pred, seq)])
scores.append(s)
perp = [np.prod(s)**(-1/len(s)) for s in scores]
return perp
def listener_predict_one(self, context, seq, device=None):
context = np.array(context)
n_colors = len(context)
# Get all possible context orders:
indices = list(range(n_colors))
orders = [list(x) for x in itertools.permutations(indices)]
# All contexts as color sequences:
contexts = [context[x] for x in orders]
# Repeat the single utterance the needed number of times:
seqs = [seq] * len(contexts)
# All perplexities:
perps = self.perplexities(contexts, seqs, device=device)
# Ranking, using `order_indices` rather than colors and
# index sequences to avoid sorting errors from some versions
# of Python:
order_indices = range(len(orders))
ranking = sorted(zip(perps, order_indices))
# Return the minimum perplexity, the chosen color, and the
# index of the chosen color in the original context:
min_perp, order_index = ranking[0]
pred_color = contexts[order_index][-1]
pred_index = orders[order_index][-1]
return min_perp, pred_color, pred_index
def listener_predictions(self, color_seqs, word_seqs, device=None):
"""
Compute the listener predictions of the model for each example.
For the ith example, this is defined as
prediction = max_{c in C_i} P(word_seq[i] | c)
where C_i is every possible permutation of the three colors in
color_seqs[i]. We take the model's prediction to be correct
if it chooses a c in which the target is in the privileged final
position in the color sequence. (There are two such c's, since
the distractors can be in two orders; we give full credit if one
of these two c's is chosen.)
Parameters
----------
color_seqs : list of lists of list of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of list of int
Dimension m, the number of examples, and the length of
each sequence can vary.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
tuple of lists, the first member giving the gold target indices
and the second giving the predicted target indices.
"""
gold = []
predicted = []
correct = 0
for color_seq, word_seq in zip(color_seqs, word_seqs):
target_index = len(color_seq) - 1
min_perp, pred, pred_index = self.listener_predict_one(
color_seq, word_seq, device=device)
gold.append(target_index)
predicted.append(pred_index)
return gold, predicted
def listener_accuracy(self, color_seqs, word_seqs, device=None):
"""
Returns the listener accuracy as calculated based on values
returns by `listener_predictions`.
"""
gold, predicted = self.listener_predictions(
color_seqs, word_seqs, device=device)
return accuracy_score(gold, predicted)
def score(self, color_seqs, word_seqs, device=None):
"""
Alias for `listener_accuracy`. This method is included to
make it easier to use sklearn cross-validators, which expect
a method called `score`.
"""
return self.listener_accuracy(color_seqs, word_seqs, device=device)
def corpus_bleu(self, color_seqs, word_seqs):
"""
Calculate the corpus BLEU score achieved by `model` with respect
to `color_seqs` and `word_seqs`, using just unigrams.
Parameters
----------
color_seqs : list of lists of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of lists of utterances
A tokenized list of words.
Returns
-------
tuple consisting of the bleu score (float) and the predictions
as a list of lists of tokens
"""
# Ideally, we would have multiple references for each context,
# but alas we have only one:
refs = [[seq] for seq in word_seqs]
# Predict some utterances:
preds = self.predict(color_seqs)
# Calculate a unigrams-only BLEU score:
bleu = nltk.translate.bleu_score.corpus_bleu(
refs, preds, weights=(1, ))
return bleu, preds
def evaluate(self, color_seqs, word_seqs, device=None):
"""
Full evaluation for the bake-off. Uses `listener_accuracy`
and colors_corpus_bleu`.
Parameters
----------
color_seqs : list of lists of lists of floats, or np.array
Dimension (m, n, p) where m is the number of examples, n is
the number of colors in each context, and p is the length
of the color representations.
word_seqs : list of lists of utterances
A tokenized list of words.
device: str or None
Allows the user to temporarily change the device used
during prediction. This is useful if predictions require a
lot of memory and so are better done on the CPU. After
prediction is done, the model is returned to `self.device`.
Returns
-------
dict, {
"listener_accuracy": float,
"corpus_bleu": float,
"target_index": list of int,
"predicted_index": list of int}
"""
gold, predicted = self.listener_predictions(
color_seqs, word_seqs, device=device)
acc = accuracy_score(gold, predicted)
bleu, pred_utt = self.corpus_bleu(color_seqs, word_seqs)
return {
"listener_accuracy": acc,
"corpus_bleu": bleu,
"target_index": gold,
"predicted_index": predicted,
"predicted_utterance": pred_utt}
def create_example_dataset(group_size=100, vec_dim=2):
"""
Creates simple datasets in which the inputs are three-vector
sequences and the outputs are simple character sequences, with
the range of values in the final vector in the input determining
the output sequence. For example, a single input/output pair
will look like this:
[[0.44, 0.51], [0.87, 0.89], [0.1, 0.2]], ['<s>', 'A', '</s>']
The sequences are meaningless, as are their lengths (which were
chosen only to be different from each other).
"""
import random
groups = ((0.0, 0.2), (0.4, 0.6), (0.8, 1.0))
vocab = ['<s>', '</s>', 'A', 'B', '$UNK']
seqs = [
['<s>', 'A', '</s>'],
['<s>', 'A', 'B', '</s>'],
['<s>', 'B', 'A', 'B', 'A', '</s>']]
color_seqs = []
word_seqs = []
for i, ((l, u), seq) in enumerate(zip(groups, seqs)):
dis_indices = list(range(len(groups)))
dis_indices.remove(i)
random.shuffle(dis_indices)
disl1, disu1 = groups[dis_indices[0]]
disl2, disu2 = groups[dis_indices[1]]
for _ in range(group_size):
target = utils.randvec(vec_dim, l, u)
dis1 = utils.randvec(vec_dim, disl1, disu1)
dis2 = utils.randvec(vec_dim, disl2, disu2)
context = [dis1, dis2, target]
color_seqs.append(context)
word_seqs += [seq for _ in range(group_size)]
return color_seqs, word_seqs, vocab
def simple_example(group_size=100, vec_dim=2):
from sklearn.model_selection import train_test_split
utils.fix_random_seeds()
color_seqs, word_seqs, vocab = create_example_dataset(
group_size=group_size, vec_dim=vec_dim)
X_train, X_test, y_train, y_test = train_test_split(
color_seqs, word_seqs)
mod = ContextualColorDescriber(vocab)
print(mod)
mod.fit(X_train, y_train)
preds = mod.predict(X_test)
mod.predict_proba(X_test, y_test)
correct = 0
for y, p in zip(y_test, preds):
correct += int(y == p)
print("\nExact sequence: {} of {} correct".format(correct, len(y_test)))
lis_acc = mod.listener_accuracy(X_test, y_test)
print("\nListener accuracy {}".format(lis_acc))
return lis_acc
if __name__ == '__main__':
simple_example()