-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support IPOP-CMA-ES algorithm. #131
Conversation
This comment has been minimized.
This comment has been minimized.
Benchmark result of rosenbrock function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rosenbrock Function
SolversID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 8931843d684313fcaad663dbaa143cbb7bea514bc200c5c8593e10ad7d8d446crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "Optuna (CMA-ES)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 01f15f09812e2d814a26d1219a981765c157b45100698158c37abe239cea997brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/rosenbrock_problem",
"args": []
}
} specification: {
"name": "Rosenbrock Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rosenbrock",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 5215baebf9217aa9dd2b3904fde351f6eba751db45f36a9b9f84e616754878ab
ID: 80416880cba9442d494385831fbd39545320e4b25d7a75235a2531cec0885c62
ID: 7bb2fc6862c228414cf27578a36dc5484f1a7c29974c808644b6f243fda9a521
ID: ff11e028559c0dd7fba670fdbaa978c691eed425893e295908fde1ab9f6a3501
|
Benchmark result of sigopt/evalset/Ackley problem
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: sigopt/evalset/Ackley(dim=20)
SolversID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 86646e95541bf74caec8d04822a0bafa84c876b38544bee3573e40097daf2e6crecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/goptuna/goptuna/_benchmarks/optuna_solver.py",
"tpe"
]
}
} specification: {
"name": "Optuna (TPE)",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 5391658cb10db240ae15be38b5b37e83f4463dd3642a11bb1fbb5600d1c5f141recipe: {
"sigopt": {
"name": "ACKLEY",
"dim": 20
}
} specification: {
"name": "sigopt/evalset/Ackley(dim=20)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.7"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p10",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p11",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p12",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p13",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p14",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p15",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p16",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p17",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p18",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p19",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: aa14eca0f146f6ad829722278a3475cd02f819ee4c034348fc99f1e7a34c9837
ID: 0728013a30e19e63398ee33370df8972ab6ae1b294611bb78ea8f516a5e656b8
ID: 96f9b547442760d0b438d64de21efd5ec5c90c5c925b61061a32e60515893889
ID: 3876de7d62fb2f0bf37ba3f665c7ab0dd992b210ace85f4e7bf6c797ba267a9e
ID: 76a4de94aaa57448def92b9151864f44c4f924fe1cbedbcb47160388b3a5561d
|
Paper: Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC’2005), pp. 1769–1776 (2005a)
ShouldStop()
method in CMA-ES lowlevel optimizer.cmaes.Sampler
.following todos: