Build status for all platforms: Commercial support:
This directory contains the JavaCPP Presets module for:
- MXNet 1.9.1 http://mxnet.incubator.apache.org/
Please refer to the parent README.md file for more detailed information about the JavaCPP Presets.
Java API documentation is available here:
∗ Bindings are currently available only for the C API of MXNet.
Scala API documentation is available here:
∗ Call Loader.load(org.bytedeco.mxnet.presets.mxnet.class)
before using the API in the org.apache.mxnet
package.
Here is a simple example of the predict API of MXNet ported to Java from this C++ source file and for this data:
- https://github.com/apache/incubator-mxnet/blob/1.4.1/example/image-classification/predict-cpp/image-classification-predict.cc
- http://data.mxnet.io/mxnet/models/imagenet/inception-bn.tar.gz
We can use Maven 3 to download and install automatically all the class files as well as the native binaries. To run this sample code, after creating the pom.xml
and ImageClassificationPredict.java
source files below, simply execute on the command line:
$ mvn compile exec:java -Dexec.args="apple.jpg"
<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.bytedeco.mxnet</groupId>
<artifactId>ImageClassificationPredict</artifactId>
<version>1.5.8</version>
<properties>
<exec.mainClass>ImageClassificationPredict</exec.mainClass>
</properties>
<dependencies>
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>mxnet-platform</artifactId>
<version>1.9.1-1.5.8</version>
</dependency>
<!-- Additional dependencies required to use CUDA, cuDNN, and NCCL -->
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>mxnet-platform-gpu</artifactId>
<version>1.9.1-1.5.8</version>
</dependency>
<!-- Additional dependencies to use bundled CUDA, cuDNN, and NCCL -->
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>cuda-platform-redist</artifactId>
<version>11.8-8.6-1.5.8</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>.</sourceDirectory>
</build>
</project>
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Xiao Liu, pertusa, caprice-j
* \file image_classification-predict.cpp
* \brief C++ predict example of mxnet
*
* This is a simple predictor which shows how to use c api for image classification. It uses
* opencv for image reading.
*
* Created by liuxiao on 12/9/15.
* Thanks to : pertusa, caprice-j, sofiawu, tqchen, piiswrong
* Home Page: www.liuxiao.org
* E-mail: liuxiao@foxmail.com
*/
import java.io.Closeable;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import java.util.ListIterator;
import org.apache.mxnet.javaapi.*;
import org.bytedeco.javacpp.*;
// Path for c_predict_api
import org.bytedeco.mxnet.*;
import static org.bytedeco.mxnet.global.mxnet.*;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
public class ImageClassificationPredict {
static final float DEFAULT_MEAN = 117.0f;
// Read file to buffer
static class BufferFile implements Closeable {
public String file_path_;
public int length_ = 0;
public BytePointer buffer_;
public BufferFile(String file_path) {
file_path_ = file_path;
try {
byte[] bytes = Files.readAllBytes(Paths.get(file_path));
length_ = bytes.length;
System.out.println(file_path + " ... " + length_ + " bytes");
buffer_ = new BytePointer(bytes);
} catch (IOException e) {
System.err.println("Can't open the file: " + e + ". Please check " + file_path + ".");
assert false;
}
}
public int GetLength() {
return length_;
}
public BytePointer GetBuffer() {
return buffer_;
}
public void close() throws IOException {
buffer_.deallocate();
buffer_ = null;
}
}
static void GetImageFile(String image_file, FloatPointer image_data,
int channels, Size resize_size, FloatPointer mean_data) {
// Read all kinds of file into a BGR color 3 channels image
Mat im_ori = imread(image_file, IMREAD_COLOR);
if (im_ori.empty()) {
System.err.println("Can't open the image. Please check " + image_file + ".");
assert false;
}
Mat im = new Mat();
resize(im_ori, im, resize_size);
int rows = im.rows();
int cols = im.cols();
int size = rows * cols * channels;
FloatBuffer ptr_image_r = image_data.position(0).asBuffer();
FloatBuffer ptr_image_g = image_data.position(size / 3).asBuffer();
FloatBuffer ptr_image_b = image_data.position(size / 3 * 2).asBuffer();
FloatBuffer ptr_mean_r, ptr_mean_g, ptr_mean_b;
ptr_mean_r = ptr_mean_g = ptr_mean_b = null;
if (mean_data != null && !mean_data.isNull()) {
ptr_mean_r = mean_data.position(0).asBuffer();
ptr_mean_g = mean_data.position(size / 3).asBuffer();
ptr_mean_b = mean_data.position(size / 3 * 2).asBuffer();
}
float mean_b, mean_g, mean_r;
mean_b = mean_g = mean_r = DEFAULT_MEAN;
for (int i = 0; i < rows; i++) {
ByteBuffer data = im.ptr(i).capacity(3 * cols).asBuffer();
for (int j = 0; j < cols; j++) {
if (mean_data != null && !mean_data.isNull()) {
mean_r = ptr_mean_r.get();
if (channels > 1) {
mean_g = ptr_mean_g.get();
mean_b = ptr_mean_b.get();
}
}
if (channels > 1) {
ptr_image_b.put((float)(data.get() & 0xFF) - mean_b);
ptr_image_g.put((float)(data.get() & 0xFF) - mean_g);
}
ptr_image_r.put((float)(data.get() & 0xFF) - mean_r);
}
}
}
// LoadSynsets
// Code from : https://github.com/pertusa/mxnet_predict_cc/blob/master/mxnet_predict.cc
static List<String> LoadSynset(String synset_file) {
try {
List<String> output = Files.readAllLines(Paths.get(synset_file));
ListIterator<String> it = output.listIterator();
while (it.hasNext()) {
String synsetLemma = it.next();
it.set(synsetLemma.substring(synsetLemma.indexOf(" ") + 1));
}
return output;
} catch (IOException e) {
System.err.println("Error opening synset file " + synset_file + ": " + e);
assert false;
}
return null;
}
static void PrintOutputResult(FloatPointer data, List<String> synset) {
if (data.limit() != synset.size()) {
System.err.println("Result data and synset size does not match!");
}
float best_accuracy = 0.0f;
int best_idx = 0;
for (int i = 0; i < data.limit(); i++) {
System.out.printf("Accuracy[%d] = %.8f\n", i, data.get(i));
if (data.get(i) > best_accuracy) {
best_accuracy = data.get(i);
best_idx = i;
}
}
System.out.printf("Best Result: %s (id=%d, accuracy=%.8f)\n",
synset.get(best_idx).trim(), best_idx, best_accuracy);
}
static void predict(PredictorHandle pred_hnd, FloatPointer image_data,
NDListHandle nd_hnd, String synset_file, int n) {
int image_size = (int)image_data.limit();
// Set Input Image
MXPredSetInput(pred_hnd, "data", image_data.position(0), image_size);
// Do Predict Forward
MXPredForward(pred_hnd);
int output_index = 0;
IntPointer shape = new IntPointer((IntPointer)null);
IntPointer shape_len = new IntPointer(1);
// Get Output Result
MXPredGetOutputShape(pred_hnd, output_index, shape, shape_len);
int size = 1;
for (int i = 0; i < shape_len.get(0); i++) { size *= shape.get(i); }
FloatPointer data = new FloatPointer(size);
MXPredGetOutput(pred_hnd, output_index, data.position(0), size);
// Release NDList
if (nd_hnd != null) {
MXNDListFree(nd_hnd);
}
// Release Predictor
MXPredFree(pred_hnd);
// Synset path for your model, you have to modify it
List<String> synset = LoadSynset(synset_file);
// Print Output Data
PrintOutputResult(data.position(0), synset);
}
public static void main(String[] args) throws Exception {
// Preload required by JavaCPP
Loader.load(org.bytedeco.mxnet.global.mxnet.class);
if (args.length < 1) {
System.out.println("No test image here.");
System.out.println("Usage: java ImageClassificationPredict apple.jpg [num_threads]");
return;
}
final String test_file = args[0];
int num_threads = 1;
if (args.length == 2) {
num_threads = Integer.parseInt(args[1]);
}
// Models path for your model, you have to modify it
final String json_file = "model/Inception/Inception-BN-symbol.json";
final String param_file = "model/Inception/Inception-BN-0126.params";
final String synset_file = "model/Inception/synset.txt";
final String nd_file = "model/Inception/mean_224.nd";
BufferFile json_data = new BufferFile(json_file);
BufferFile param_data = new BufferFile(param_file);
// Parameters
int dev_type = 1; // 1: cpu, 2: gpu
int dev_id = 0; // arbitrary.
int num_input_nodes = 1; // 1 for feedforward
String[] input_keys = { "data" };
// Image size and channels
int width = 224;
int height = 224;
int channels = 3;
int[] input_shape_indptr = { 0, 4 };
int[] input_shape_data = { 1, channels, height, width };
if (json_data.GetLength() == 0 || param_data.GetLength() == 0) {
System.exit(1 /* EXIT_FAILURE */);
}
final int image_size = width * height * channels;
// Read Mean Data
final FloatPointer nd_data = new FloatPointer((Pointer)null);
final NDListHandle nd_hnd = new NDListHandle((Pointer)null);
final BufferFile nd_buf = new BufferFile(nd_file);
if (nd_buf.GetLength() > 0) {
int nd_index = 0;
IntPointer nd_len = new IntPointer(1);
IntPointer nd_shape = new IntPointer((Pointer)null);
BytePointer nd_key = new BytePointer((Pointer)null);
IntPointer nd_ndim = new IntPointer(new int[]{0});
MXNDListCreate(nd_buf.GetBuffer(),
nd_buf.GetLength(),
nd_hnd, nd_len);
MXNDListGet(nd_hnd, nd_index, nd_key, nd_data, nd_shape, nd_ndim);
}
// Read Image Data
final FloatPointer image_data = new FloatPointer(image_size);
GetImageFile(test_file, image_data, channels, new Size(width, height), nd_data);
if (num_threads == 1) {
// Create Predictor
final PointerPointer<PredictorHandle> pred_hnd = new PointerPointer<PredictorHandle>(1);
MXPredCreate(json_data.GetBuffer(),
param_data.GetBuffer(),
param_data.GetLength(),
dev_type,
dev_id,
num_input_nodes,
new PointerPointer(input_keys),
new IntPointer(input_shape_indptr),
new IntPointer(input_shape_data),
pred_hnd);
assert !pred_hnd.get().isNull();
predict(pred_hnd.get(PredictorHandle.class), image_data, nd_hnd, synset_file, 0);
} else {
// Create Predictor
final PointerPointer<PredictorHandle> pred_hnds = new PointerPointer<PredictorHandle>(num_threads);
MXPredCreateMultiThread(json_data.GetBuffer(),
param_data.GetBuffer(),
param_data.GetLength(),
dev_type,
dev_id,
num_input_nodes,
new PointerPointer(input_keys),
new IntPointer(input_shape_indptr),
new IntPointer(input_shape_data),
num_threads,
pred_hnds);
for (int i = 0; i < num_threads; i++) {
assert !pred_hnds.get(i).isNull();
}
List<Thread> threads = new ArrayList<Thread>();
for (int i = 0; i < num_threads; i++) {
final int n = i;
threads.add(new Thread() { public void run() {
predict(pred_hnds.get(PredictorHandle.class, n), image_data, nd_hnd, synset_file, n);
}});
threads.get(i).start();
}
for (int i = 0; i < num_threads; i++) {
threads.get(i).join();
}
}
System.out.println("run successfully");
System.exit(0 /* EXIT_SUCCESS */);
}
}