Skip to content

Latest commit

 

History

History

opencv

JavaCPP Presets for OpenCV

Gitter Maven Central Sonatype Nexus (Snapshots)
Build status for all platforms: opencv Commercial support: xscode

Introduction

This directory contains the JavaCPP Presets module for:

Please refer to the parent README.md file for more detailed information about the JavaCPP Presets.

Documentation

Java API documentation is available here:

∗ Call Loader.load(opencv_java.class) before using the API in the org.opencv namespace.
∗ Call Py_AddPath(opencv_python3.cachePackages()) before calling Py_Initialize().

Sample Usage

Here is a simple example of OpenCV ported to Java from this C++ source file:

We can use Maven 3 to download and install automatically all the class files as well as the native binaries. To run this sample code, after creating the pom.xml and Stitching.java source files below, simply execute on the command line:

 $ mvn compile exec:java -Dexec.args="img1 img2 [...imgN]"

The pom.xml build file

<project>
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.bytedeco.opencv</groupId>
    <artifactId>stitching</artifactId>
    <version>1.5.5-SNAPSHOT</version>
    <properties>
        <exec.mainClass>Stitching</exec.mainClass>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>opencv-platform</artifactId>
            <version>4.5.0-1.5.5-SNAPSHOT</version>
        </dependency>

        <!-- Additional dependencies required to use CUDA and cuDNN -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>opencv-platform-gpu</artifactId>
            <version>4.5.0-1.5.5-SNAPSHOT</version>
        </dependency>

        <!-- Additional dependencies to use bundled CUDA and cuDNN -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>cuda-platform-redist</artifactId>
            <version>11.1-8.0-1.5.5-SNAPSHOT</version>
        </dependency>

        <!-- Additional dependencies to use bundled full version of MKL -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>mkl-platform-redist</artifactId>
            <version>2020.4-1.5.5-SNAPSHOT</version>
        </dependency>

        <!-- Optional dependencies to load the Python module -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>numpy-platform</artifactId>
            <version>1.19.4-1.5.5-SNAPSHOT</version>
        </dependency>

    </dependencies>
    <build>
        <sourceDirectory>.</sourceDirectory>
    </build>
</project>

The Stitching.java source file

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

import org.bytedeco.javacpp.*;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_stitching.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
import static org.bytedeco.opencv.global.opencv_stitching.*;

public class Stitching {
    static boolean try_use_gpu = false;
    static MatVector imgs = new MatVector();
    static String result_name = "result.jpg";

    public static void main(String[] args) {
        /* try to use MKL when available */
        System.setProperty("org.bytedeco.openblas.load", "mkl");

        int retval = parseCmdArgs(args);
        if (retval != 0) {
            System.exit(-1);
        }

        Mat pano = new Mat();
        Stitcher stitcher = createStitcher(try_use_gpu);
        int status = stitcher.stitch(imgs, pano);

        if (status != Stitcher.OK) {
            System.out.println("Can't stitch images, error code = " + status);
            System.exit(-1);
        }

        imwrite(result_name, pano);
        System.exit(0);
    }

    static void printUsage() {
        System.out.println(
            "Rotation model images stitcher.\n\n"
          + "stitching img1 img2 [...imgN]\n\n"
          + "Flags:\n"
          + "  --try_use_gpu (yes|no)\n"
          + "      Try to use GPU. The default value is 'no'. All default values\n"
          + "      are for CPU mode.\n"
          + "  --output <result_img>\n"
          + "      The default is 'result.jpg'.");
    }

    static int parseCmdArgs(String[] args) {
        if (args.length == 0) {
            printUsage();
            return -1;
        }
        for (int i = 0; i < args.length; i++) {
            if (args[i].equals("--help") || args.equals("/?")) {
                printUsage();
                return -1;
            } else if (args[i].equals("--try_use_gpu")) {
                if (args[i + 1].equals("no")) {
                    try_use_gpu = false;
                } else if (args[i + 1].equals("yes")) {
                    try_use_gpu = true;
                } else {
                    System.out.println("Bad --try_use_gpu flag value");
                    return -1;
                }
                i++;
            } else if (args[i].equals("--output")) {
                result_name = args[i + 1];
                i++;
            } else {
                Mat img = imread(args[i]);
                if (img.empty()) {
                    System.out.println("Can't read image '" + args[i] + "'");
                    return -1;
                }
                imgs.resize(imgs.size() + 1);
                imgs.put(imgs.size() - 1, img);
            }
        }
        return 0;
    }
}