Skip to content

Latest commit

 

History

History
188 lines (154 loc) · 6.98 KB

README.md

File metadata and controls

188 lines (154 loc) · 6.98 KB

OmniScient-Model (ECCV 2024)

This repo contains the code for our paper Towards Open-Ended Visual Recognition with Large Language Model


We propose OmniScient Model (OSM) towards open-ended visual recognition, allowing the identification of diverse real-world entities without the constraints of a user-defined vocabulary. Unlike closed-vocabulary and open-vocabulary recognition frameworks, OSM operates seamlessly without the need for predefined vocabularies.


Features

  • A simple strategy to adapt multi-modal LLM for high-resolution image at 1120x1120, leading to more precise recognition ability.

  • A brand-new task named open-ended visual recognition to predict beyond the limitation of a given vocabulary.

  • A strong model that can recognize novel concepts in the real-world, e.g., it can recognize semantic parts even when only trained on object-level data.

Installation

pip install torch==2.0.1 torchvision==0.15.2
pip install -r requirements.txt

Getting Started

We provide examples applying OSM on top of an off-the-shelf segmenter (e.g., SAM), illustrating playing with OSM in a segment and recognize anything mode in demo_with_sam.py, or in an interactive model in interactive_demo.ipynb.

Data Preparation

Please refer to Preparing Datasets for OSM.

Training

After finishing the data preparation, you can use the following commands to train OSM model with 8 A100 GPUs in 2 days, and you can adjust the gradient accumulation, FSDP, gradient checkpointing per your computational resources.

To train OSM-final w/o part segmentation or detection data:

torchrun --nnodes=1 --nproc_per_node=8 --master_addr=127.0.0.1 --master_port=9999 --node_rank=0 \
  train/train.py \
  --dataset_resampled \
  --batch_size_coco 8 \
  --batch_size_lvis 16 \
  --batch_size_a847 4 \
  --batch_size_pc459 2 \
  --batch_size_ade20k 4 \
  --batch_size_cityscapes 2 \
  --train_num_samples_coco 100000 \
  --train_num_samples_lvis 200000 \
  --train_num_samples_a847 50000 \
  --train_num_samples_pc459 25000 \
  --train_num_samples_ade20k 50000 \
  --train_num_samples_cityscapes 25000 \
  --workers 4 \
  --run_name osm_final \
  --num_epochs 10 \
  --warmup_steps 100 \
  --weight_decay 0.05 \
  --lr_scheduler cosine \
  --coco_shards "$SAVE_PATH/coco_pan_wds_exclude_lvisval/{000000000..000000106}.tar" \
  --lvis_shards "$SAVE_PATH/lvis_wds/{000000000..000000099}.tar" \
  --a847_shards "$SAVE_PATH/a847_wds/{000000000..000000025}.tar" \
  --pc459_shards "$SAVE_PATH/pc459_wds/{000000000..000000004}.tar" \
  --ade20k_shards "$SAVE_PATH/ade20k_pan_wds/{000000000..000000020}.tar" \
  --cityscapes_shards "$SAVE_PATH/cityscapes_pan_wds/{000000000..000000002}.tar" \
  --learning_rate 4e-5 \
  --precision amp_bfloat16 \
  --gradient_accumulation_steps 4

To train OSM-final w/ part segmentation and detection data:

torchrun --nnodes=1 --nproc_per_node=8 --master_addr=127.0.0.1 --master_port=9999 --node_rank=0 \
  train/train.py \
  --dataset_resampled \
  --mask2box_prob 0.2 \
  --batch_size_coco 8 \
  --batch_size_lvis 16 \
  --batch_size_a847 4 \
  --batch_size_pc459 2 \
  --batch_size_ade20k 4 \
  --batch_size_cityscapes 2 \
  --batch_size_v3det 16 \
  --batch_size_partimagenet 4 \
  --batch_size_pascal_part 2 \
  --train_num_samples_coco 100000 \
  --train_num_samples_lvis 200000 \
  --train_num_samples_a847 50000 \
  --train_num_samples_pc459 25000 \
  --train_num_samples_ade20k 50000 \
  --train_num_samples_cityscapes 25000 \
  --train_num_samples_v3det 200000 \
  --train_num_samples_partimagenet 50000 \
  --train_num_samples_pascal_part 25000 \
  --workers 4 \
  --run_name osm_final_partseg_det \
  --num_epochs 10 \
  --warmup_steps 100 \
  --weight_decay 0.05 \
  --lr_scheduler cosine \
  --coco_shards "$SAVE_PATH/coco_pan_wds_exclude_lvisval/{000000000..000000106}.tar" \
  --lvis_shards "$SAVE_PATH/lvis_wds/{000000000..000000099}.tar" \
  --a847_shards "$SAVE_PATH/a847_wds/{000000000..000000025}.tar" \
  --pc459_shards "$SAVE_PATH/pc459_wds/{000000000..000000004}.tar" \
  --ade20k_shards "$SAVE_PATH/ade20k_pan_wds/{000000000..000000020}.tar" \
  --cityscapes_shards "$SAVE_PATH/cityscapes_pan_wds/{000000000..000000002}.tar" \
  --v3det_shards "$SAVE_PATH/v3det_wds/{000000000..000000183}.tar" \
  --partimagenet_shards "$SAVE_PATH/part_imagenet_wds/{000000000..000000020}.tar" \
  --pascal_part_shards "$SAVE_PATH/pascal_part_wds/{000000000..000000008}.tar" \
  --learning_rate 4e-5 \
  --precision amp_bfloat16 \
  --gradient_accumulation_steps 4

Testing

Update the data path in test/generate_pred.py, then run the following script for testing:

GPU_COUNT=8  # Set your GPU count here
CKPT_PATH="./osm_final.pt"  # Set your checkpoint path here
RESULT_SAVE_PATH="osm_final"  # Set your result save path here

for (( i=0; i<GPU_COUNT; i++ )); do
    CUDA_VISIBLE_DEVICES=$i python3 test/generate_pred.py $i $GPU_COUNT $CKPT_PATH $RESULT_SAVE_PATH &
done

wait # This will wait for all the background jobs to finish

python3 test/evaluate_pred.py $RESULT_SAVE_PATH $GPU_COUNT

Model Zoo

Checkpoint Training Datasets
OSM COCO Panoptic, ADE Panoptic, Cityscapes Panoptic, LVIS Instance, A-847 Semantic, PC-459 Semantic
OSM w/ part and box COCO Panoptic, ADE Panoptic, Cityscapes Panoptic, LVIS Instance, A-847 Semantic, PC-459 Semantic, Part-ImageNet Semantic, Pascal-Part Semantic, V3Det Detection

Visual Results




Citing OSM

If you use OSM in your research, please use the following BibTeX entry.

@inproceedings{yu2023towards,
  title={Towards Open-Ended Visual Recognition with Large Language Model},
  author={Qihang Yu and Xiaohui Shen and Liang-Chieh Chen},
  booktitle={ECCV},
  year={2024}
}

Acknowledgement

Segment Anything

OpenFlamingo