forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
38 lines (31 loc) · 1.37 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Taken from llama code and lightly modified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
from logging import getLogger
from typing import List
from sentencepiece import SentencePieceProcessor
TOKENIZER_MODEL = "tokenizer.model" # the llama sentencepiece tokenizer model
class Tokenizer:
def __init__(self):
model_path = TOKENIZER_MODEL
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
#print(f"Loaded SentencePiece model from {model_path}")
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
#print(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}")
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)