-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssd_dataloader.py
405 lines (324 loc) · 15.4 KB
/
ssd_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright 2018 Google. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data loader and processing."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools as it
import math
import numpy as np
import tensorflow as tf
from object_detection.box_coders import faster_rcnn_box_coder
from object_detection.core import box_list
from object_detection.core import region_similarity_calculator
from object_detection.core import target_assigner
from object_detection.matchers import argmax_matcher
import mlperf
import ssd_constants
class DefaultBoxes(object):
"""Default bounding boxes for 300x300 5 layer SSD.
Default bounding boxes generation follows the order of (W, H, anchor_sizes).
Therefore, the tensor converted from DefaultBoxes has a shape of
[anchor_sizes, H, W, 4]. The last dimension is the box coordinates; 'ltrb'
is [ymin, xmin, ymax, xmax] while 'xywh' is [cy, cx, h, w].
"""
def __init__(self):
fk = ssd_constants.IMAGE_SIZE / np.array(ssd_constants.STEPS)
self.default_boxes = []
# size of feature and number of feature
for idx, feature_size in enumerate(ssd_constants.FEATURE_SIZES):
sk1 = ssd_constants.SCALES[idx] / ssd_constants.IMAGE_SIZE
sk2 = ssd_constants.SCALES[idx+1] / ssd_constants.IMAGE_SIZE
sk3 = math.sqrt(sk1*sk2)
all_sizes = [(sk1, sk1), (sk3, sk3)]
for alpha in ssd_constants.ASPECT_RATIOS[idx]:
w, h = sk1 * math.sqrt(alpha), sk1 / math.sqrt(alpha)
all_sizes.append((w, h))
all_sizes.append((h, w))
assert len(all_sizes) == ssd_constants.NUM_DEFAULTS[idx]
for w, h in all_sizes:
for i, j in it.product(range(feature_size), repeat=2):
cx, cy = (j + 0.5) / fk[idx], (i + 0.5) / fk[idx]
box = tuple(np.clip(k, 0, 1) for k in (cy, cx, h, w))
self.default_boxes.append(box)
assert len(self.default_boxes) == ssd_constants.NUM_SSD_BOXES
mlperf.logger.log(key=mlperf.tags.FEATURE_SIZES,
value=ssd_constants.FEATURE_SIZES)
mlperf.logger.log(key=mlperf.tags.STEPS,
value=ssd_constants.STEPS)
mlperf.logger.log(key=mlperf.tags.SCALES,
value=ssd_constants.SCALES)
mlperf.logger.log(key=mlperf.tags.ASPECT_RATIOS,
value=ssd_constants.ASPECT_RATIOS)
mlperf.logger.log(key=mlperf.tags.NUM_DEFAULTS,
value=ssd_constants.NUM_SSD_BOXES)
def to_ltrb(cy, cx, h, w):
return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
# For IoU calculation
self.default_boxes_ltrb = tuple(to_ltrb(*i) for i in self.default_boxes)
def __call__(self, order='ltrb'):
if order == 'ltrb': return self.default_boxes_ltrb
if order == 'xywh': return self.default_boxes
def calc_iou_tensor(boxes1, boxes2):
"""Calculation of IoU based on two boxes tensor.
Reference to https://github.com/kuangliu/pytorch-ssd
Args:
boxes1: shape (N, 4), four coordinates of N boxes
boxes2: shape (M, 4), four coordinates of M boxes
Returns:
IoU: shape (N, M), IoU of the i-th box in `boxes1` and j-th box in `boxes2`
"""
b1_left, b1_top, b1_right, b1_bottom = tf.split(boxes1, 4, axis=1)
b2_left, b2_top, b2_right, b2_bottom = tf.split(boxes2, 4, axis=1)
# Shape of intersect_* (N, M)
intersect_left = tf.maximum(b1_left, tf.transpose(b2_left))
intersect_top = tf.maximum(b1_top, tf.transpose(b2_top))
intersect_right = tf.minimum(b1_right, tf.transpose(b2_right))
intersect_bottom = tf.minimum(b1_bottom, tf.transpose(b2_bottom))
boxes1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
boxes2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
intersect = tf.multiply(tf.maximum((intersect_right - intersect_left), 0),
tf.maximum((intersect_bottom - intersect_top), 0))
union = boxes1_area + tf.transpose(boxes2_area) - intersect
iou = intersect / union
return iou
def ssd_parse_example_proto(example_serialized):
"""Parses an Example proto containing a training example of an image.
Each Example proto contains the following fields that we care about:
image/encoded: <JPEG encoded string>
image/source_id: tf.string
image/height: tf.int64
image/width: tf.int64
image/object/bbox/xmin: tf.VarLenFeature(tf.float32)
image/object/bbox/xmax: tf.VarLenFeature(tf.float32)
image/object/bbox/ymin: tf.VarLenFeature(tf.float32
image/object/bbox/ymax: tf.VarLenFeature(tf.float32)
image/object/class/label: tf.VarLenFeature(tf.int64)
image/object/class/text: tf.VarLenFeature(tf.string)
Complete decoder can be found in:
https://github.com/tensorflow/models/blob/master/research/object_detection/data_decoders/tf_example_decoder.py
Args:
example_serialized: scalar Tensor tf.string containing a serialized
Example protocol buffer.
Returns:
A dictionary with the following key-values:
image_buffer: Tensor tf.string containing the contents of a JPEG file.
groundtruth_boxes: Tensor tf.float32 of shape [num_boxes, 4], containing
coordinates of object bounding boxes.
groundtruth_classeS: Tensor tf.int64 of shape [num_boxes, 1], containing
class labels of objects.
source_id: unique image identifier.
raw_shape: [height, width, 3].
"""
feature_map = {
'image/encoded': tf.FixedLenFeature(
(), dtype=tf.string, default_value=''),
'image/source_id': tf.FixedLenFeature((), tf.string, default_value=''),
'image/height': tf.FixedLenFeature((), tf.int64, default_value=1),
'image/width': tf.FixedLenFeature((), tf.int64, default_value=1),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(dtype=tf.int64),
}
features = tf.parse_single_example(example_serialized, feature_map)
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 1)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 1)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 1)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 1)
image_buffer = features['image/encoded']
# Bounding box coordinates should be in ltrb order
boxes = tf.concat([ymin, xmin, ymax, xmax], 1)
classes = tf.expand_dims(features['image/object/class/label'].values, 1)
source_id = features['image/source_id']
raw_shape = tf.stack([features['image/height'], features['image/width'], 3])
return {'image_buffer': image_buffer,
'groundtruth_boxes': boxes,
'groundtruth_classes': classes,
'source_id': source_id,
'raw_shape': raw_shape}
def ssd_decode_and_crop(image_buffer, boxes, classes, raw_shape):
"""Crop image randomly and decode the cropped region.
This function will crop an image to meet the following requirements:
1. height to width ratio between 0.5 and 2;
2. IoUs of some boxes exceed specified threshold;
3. At least one box center is in the cropped region.
We defer the jpeg decoding task until after the crop to avoid wasted work.
Reference: https://github.com/chauhan-utk/ssd.DomainAdaptation
Args:
image_buffer: Tensor tf.string containing the contents of a JPEG file.
boxes: Tensor tf.float32 of shape [num_boxes, 4], containing coordinates of
object bounding boxes.
classes: Tensor tf.int64 of shape [num_boxes, 1], containing class labels
of objects.
raw_shape: [height, width, 3].
Returns:
resized_image: decoded, cropped, and resized image Tensor tf.float32 of
shape [ssd_constants.IMAGE_SIZE, ssd_constants.IMAGE_SIZE, 3], value
range 0--255.
cropped_boxes: box coordinates for objects in the cropped region.
cropped_classes: class labels for objects in the cropped region.
"""
num_boxes = tf.shape(boxes)[0]
def no_crop_check():
return (tf.random_uniform(shape=(), minval=0, maxval=1, dtype=tf.float32)
< ssd_constants.P_NO_CROP_PER_PASS)
def no_crop_proposal():
return (
tf.ones((), tf.bool),
tf.convert_to_tensor([0, 0, 1, 1], dtype=tf.float32),
tf.ones((num_boxes,), tf.bool),
)
def crop_proposal():
rand_vec = lambda minval, maxval: tf.random_uniform(
shape=(ssd_constants.NUM_CROP_PASSES, 1), minval=minval, maxval=maxval,
dtype=tf.float32)
width, height = rand_vec(0.3, 1), rand_vec(0.3, 1)
left, top = rand_vec(0, 1-width), rand_vec(0, 1-height)
right = left + width
bottom = top + height
ltrb = tf.concat([left, top, right, bottom], axis=1)
min_iou = tf.random_shuffle(ssd_constants.CROP_MIN_IOU_CHOICES)[0]
ious = calc_iou_tensor(ltrb, boxes)
# discard any bboxes whose center not in the cropped image
xc, yc = [tf.tile(0.5 * (boxes[:, i + 0] + boxes[:, i + 2])[tf.newaxis, :],
(ssd_constants.NUM_CROP_PASSES, 1)) for i in range(2)]
masks = tf.reduce_all(tf.stack([
tf.greater(xc, tf.tile(left, (1, num_boxes))),
tf.less(xc, tf.tile(right, (1, num_boxes))),
tf.greater(yc, tf.tile(top, (1, num_boxes))),
tf.less(yc, tf.tile(bottom, (1, num_boxes))),
], axis=2), axis=2)
# Checks of whether a crop is valid.
valid_aspect = tf.logical_and(tf.less(height/width, 2),
tf.less(width/height, 2))
valid_ious = tf.reduce_all(tf.greater(ious, min_iou), axis=1, keepdims=True)
valid_masks = tf.reduce_any(masks, axis=1, keepdims=True)
valid_all = tf.cast(tf.reduce_all(tf.concat(
[valid_aspect, valid_ious, valid_masks], axis=1), axis=1), tf.int32)
# One indexed, as zero is needed for the case of no matches.
index = tf.range(1, 1 + ssd_constants.NUM_CROP_PASSES, dtype=tf.int32)
# Either one-hot, or zeros if there is no valid crop.
selection = tf.equal(tf.reduce_max(index * valid_all), index)
use_crop = tf.reduce_any(selection)
output_ltrb = tf.reduce_sum(tf.multiply(ltrb, tf.tile(tf.cast(
selection, tf.float32)[:, tf.newaxis], (1, 4))), axis=0)
output_masks = tf.reduce_any(tf.logical_and(masks, tf.tile(
selection[:, tf.newaxis], (1, num_boxes))), axis=0)
return use_crop, output_ltrb, output_masks
def proposal(*args):
return tf.cond(
pred=no_crop_check(),
true_fn=no_crop_proposal,
false_fn=crop_proposal,
)
_, crop_bounds, box_masks = tf.while_loop(
cond=lambda x, *_: tf.logical_not(x),
body=proposal,
loop_vars=[tf.zeros((), tf.bool), tf.zeros((4,), tf.float32), tf.zeros((num_boxes,), tf.bool)],
)
filtered_boxes = tf.boolean_mask(boxes, box_masks, axis=0)
mlperf.logger.log(key=mlperf.tags.NUM_CROPPING_ITERATIONS,
value=ssd_constants.NUM_CROP_PASSES)
# Clip boxes to the cropped region.
filtered_boxes = tf.stack([
tf.maximum(filtered_boxes[:, 0], crop_bounds[0]),
tf.maximum(filtered_boxes[:, 1], crop_bounds[1]),
tf.minimum(filtered_boxes[:, 2], crop_bounds[2]),
tf.minimum(filtered_boxes[:, 3], crop_bounds[3]),
], axis=1)
left = crop_bounds[0]
top = crop_bounds[1]
width = crop_bounds[2] - left
height = crop_bounds[3] - top
cropped_boxes = tf.stack([
(filtered_boxes[:, 0] - left) / width,
(filtered_boxes[:, 1] - top) / height,
(filtered_boxes[:, 2] - left) / width,
(filtered_boxes[:, 3] - top) / height,
], axis=1)
# crop_window containing integer coordinates of cropped region. A normalized
# coordinate value of y should be mapped to the image coordinate at
# y * (height - 1).
raw_shape = tf.cast(raw_shape, tf.float32)
crop_window = tf.stack([left * (raw_shape[0] - 1),
top * (raw_shape[1] - 1),
width * raw_shape[0],
height * raw_shape[1]])
crop_window = tf.cast(crop_window, tf.int32)
# Fused op only decodes the cropped portion of an image
cropped_image = tf.image.decode_and_crop_jpeg(
image_buffer, crop_window, channels=3)
# Resize converts image dtype from uint8 to float32, without rescaling values.
resized_image = tf.image.resize_images(
cropped_image, [ssd_constants.IMAGE_SIZE, ssd_constants.IMAGE_SIZE])
mlperf.logger.log(key=mlperf.tags.INPUT_SIZE,
value=ssd_constants.IMAGE_SIZE)
cropped_classes = tf.boolean_mask(classes, box_masks, axis=0)
return resized_image, cropped_boxes, cropped_classes
def color_jitter(image, brightness=0, contrast=0, saturation=0, hue=0):
"""Distort the color of the image."""
with tf.name_scope('distort_color'):
if brightness > 0:
image = tf.image.random_brightness(image, max_delta=brightness)
if contrast > 0:
image = tf.image.random_contrast(
image, lower=1-contrast, upper=1+contrast)
if saturation > 0:
image = tf.image.random_saturation(
image, lower=1-saturation, upper=1+saturation)
if hue > 0:
image = tf.image.random_hue(image, max_delta=hue)
return image
def normalize_image(images):
"""Normalize image to zero mean and unit variance.
Args:
images: a tensor representing images, at least 3-D.
Returns:
images normalized by mean and stdev.
"""
data_type = images.dtype
mean = tf.constant(ssd_constants.NORMALIZATION_MEAN, data_type)
std = tf.constant(ssd_constants.NORMALIZATION_STD, data_type)
images = tf.divide(tf.subtract(images, mean), std)
mlperf.logger.log(key=mlperf.tags.DATA_NORMALIZATION_MEAN,
value=ssd_constants.NORMALIZATION_MEAN)
mlperf.logger.log(key=mlperf.tags.DATA_NORMALIZATION_STD,
value=ssd_constants.NORMALIZATION_STD)
return images
class Encoder(object):
"""Encoder for SSD boxes and labels."""
def __init__(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(
matched_threshold=ssd_constants.MATCH_THRESHOLD,
unmatched_threshold=ssd_constants.MATCH_THRESHOLD,
negatives_lower_than_unmatched=True,
force_match_for_each_row=True)
box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
scale_factors=ssd_constants.BOX_CODER_SCALES)
self.default_boxes = DefaultBoxes()('ltrb')
self.default_boxes = box_list.BoxList(
tf.convert_to_tensor(self.default_boxes))
self.assigner = target_assigner.TargetAssigner(
similarity_calc, matcher, box_coder)
def encode_labels(self, gt_boxes, gt_labels):
target_boxes = box_list.BoxList(gt_boxes)
encoded_classes, _, encoded_boxes, _, matches = self.assigner.assign(
self.default_boxes, target_boxes, gt_labels)
num_matched_boxes = tf.reduce_sum(
tf.cast(tf.not_equal(matches.match_results, -1), tf.float32))
return encoded_classes, encoded_boxes, num_matched_boxes