- Sosulski, K. (2018). Data visualization made simple: insights into becoming visual. Routledge
- Merino, L., Sotomayor-Gómez, B., Yu, X., Salgado, R., Bergel, A., Sedlmair, M., & Weiskopf, D. (2020). Toward Agile Situated Visualization: An Exploratory User Study. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. DOI: 10.1145/3334480.3383017.
- Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., … & Koch, C. (2021). Survey of spiking in the mouse visual system reveals functional hierarchy. Nature, 592(7852), 86-92. DOI: 10.1038/s41586-020-03171-x.
- Grossberger, L., Battaglia, F. P., & Vinck, M. (2018). Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS computational biology, 14(7), e1006283. DOI: https://doi.org/10.1371/journal.pcbi.1006283](10.1371/journal.pcbi.1006283).
- Sotomayor-Gómez, Boris; Battaglia, Francesco P.; Vinck, Martin. SpikeShip: A method for fast, unsupervised discovery of high-dimensional neural spiking patterns.
- Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. DOI: 10.1038/s41586-020-2649-2.
- Navarro, C. A., Hitschfeld-Kahler, N., & Mateu, L. (2014). A survey on parallel computing and its applications in data-parallel problems using GPU architectures. Communications in Computational Physics, 15(2), 285-329. DOI: 10.1.1.958.9741.
- Dannemann, T., Sotomayor-Gómez, B., & Samaniego, H. (2018). The time geography of segregation during working hours. Royal Society open science, 5(10), 180749. DOI: 10.1098/rsos.180749.
- Sotomayor-Gómez, B., & Samaniego, H. (2020). City limits in the age of smartphones and urban scaling. Computers, Environment and Urban Systems, 79, 101423. DOI: 10.1016/j.compenvurbsys.2019.101423.
- RealPython. real Python Tutorials. https://realpython.com/.
- GeeksforGeeks. Python Programming Language. https://www.geeksforgeeks.org/python-programming-language/.
- Jack Daniel. Data processing in machine learning. Medium. https://medium.com/analytics-vidhya/data-preprocessing-in-machine-learning-model-3af34d0f3ceb.
- Data-flair. https://data-flair.training/blogs/python-libraries/.
- Tableau. What Is Data Visualization? Definition, Examples, And Learning Resources. https://www.tableau.com/learn/articles/data-visualization.
- SplashBI. Importance, Purpose, and Benefit of Data Visualization Tools! https://splashbi.com/importance-purpose-benefit-of-data-visualization-tools/.
- Memgraph. Exploring a Twitter Network with Memgraph in a Jupyter Notebook . https://memgraph.com/blog/jupyter-notebook-twitter-network-analysis.
- Numba: A High Performance Python Compiler. https://numba.readthedocs.io/.
- Towards Data Science. Supercharging NumPy with Numba. Running your loop/NumPy code at C/FORTRAN speeds, by Abhishek Sharma. https://towardsdatascience.com/supercharging-numpy-with-numba-77ed5b169240.
- PyData Amsterdam 2019 - Numba Tutorial Notebook 1 - NumPy and Numba on the CPU. https://github.com/numba/pydata-amsterdam2019-numba/blob/master/1%20-%20NumPy%20and%20Numba%20on%20the%20CPU.ipynb.
- Numba architecture. Numba's Developer Manual. https://numba.pydata.org/numba-doc/latest/developer/architecture.html. https://www.linkedin.com/pulse/serialism-parallelism-virtual-concurrency-ios-alcivanio-alves-2c
- "Panda: MapReduce Framework on GPU’s and CPU’s" By Hui Li. https://slideplayer.com/slide/5783228/.
- Numpy. Universal Functions (ufunc). https://numpy.org/doc/stable/reference/ufuncs.html.
- Fiylo. http://www.fiylo.de
- Syracuse University web-platform. Kid-Friendly Coding Languages and Learning Tools. https://onlinegrad.syracuse.edu/blog/kid-friendly-coding-languages/.
- TheValuable.de. Difference between compiler and interpreter. https://thevaluable.dev/difference-between-compiler-interpreter/.
- Jack Daniel. Medium. Data Preprocessing in Machine Learning Model. https://medium.com/analytics-vidhya/data-preprocessing-in-machine-learning-model-3af34d0f3ceb.
- MyMasterDesigner.com. Exploratory data analysis (EDA) with Python. https://mymasterdesigner.com/2021/05/30/exploratory-data-analysis-eda-with-python/.
- FlatIcon (https://www.flaticon.com/). (Awesome webpage with free download icons 🖤).
- Syracuse University web-platform. Kid-Friendly Coding Languages and Learning Tools. https://onlinegrad.syracuse.edu/blog/kid-friendly-coding-languages/.
- TheValuable.de. Difference between compiler and interpreter. https://thevaluable.dev/difference-between-compiler-interpreter/.
- Jack Daniel. Medium. Data Preprocessing in Machine Learning Model. https://medium.com/analytics-vidhya/data-preprocessing-in-machine-learning-model-3af34d0f3ceb.
- MyMasterDesigner.com. Exploratory data analysis (EDA) with Python. https://mymasterdesigner.com/2021/05/30/exploratory-data-analysis-eda-with-python/.
- Onrec.com. What is Data Streaming and How It Is Beneficial To Your Business, by Stuart Gentle. https://www.onrec.com/news/news-archive/what-is-data-streaming-and-how-it-is-beneficial-to-your-business.
- Freepik. https://www.freepik.com/
- Cputerworld.it. Cos’è l’High Performance Computing (HPC). https://www.cwi.it/data-center/high-performance-computing-hpc/cose-lhigh-performance-computing-hpc-83881.
-
Sundnes, J. (2020). Introduction to Scientific Programming with Python (p. 148). Springer Nature. DOI: 10.1007/978-3-030-50356-7.
-
Stephen Fordham, "How to use decorators in python by example". Towards Data Science. https://towardsdatascience.com/how-to-use-decorators-in-python-by-example-b398328163b.
-
Teclado (Youtube channel).
-
Python exercises. w3resourse. https://www.w3resource.com/python-exercises/.
-
Sundnes, J. (2020). Introduction to Scientific Programming with Python (p. 148). Springer Nature. DOI: 10.1007/978-3-030-50356-7.
-
Stephen Fordham, "How to use decorators in python by example". Towards Data Science. https://towardsdatascience.com/how-to-use-decorators-in-python-by-example-b398328163b.