-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodels_pl.py
298 lines (240 loc) · 9.84 KB
/
models_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from abc import ABC
from typing import Tuple
import lightning.pytorch as pl
import torch
import torch.nn.parallel
import torch.utils.data
import torchvision
from omegaconf import DictConfig
from rtpt import RTPT
from torch import nn
from simple_einet.conv_pc import ConvPcConfig, ConvPc
from simple_einet.data import get_data_shape
from simple_einet.dist import Dist, get_distribution
from simple_einet.einet import EinetConfig, Einet
from simple_einet.mixture import Mixture
# Translate the dataloader index to the dataset name
DATALOADER_ID_TO_SET_NAME = {0: "train", 1: "val", 2: "test"}
def make_einet(cfg, num_classes: int = 1) -> Mixture | Einet:
"""
Make an Einet model based off the given arguments.
Args:
cfg: Arguments parsed from argparse.
num_classes: Number of classes to model.
Returns:
Einet model.
"""
image_shape = get_data_shape(cfg.dataset)
# leaf_kwargs, leaf_type = {"total_count": 255}, Binomial
leaf_kwargs, leaf_type = get_distribution(dist=cfg.dist, cfg=cfg)
config = EinetConfig(
num_features=image_shape.num_pixels,
num_channels=image_shape.channels,
depth=cfg.einet.D,
num_sums=cfg.einet.S,
num_leaves=cfg.einet.I,
num_repetitions=cfg.einet.R,
num_classes=num_classes,
leaf_kwargs=leaf_kwargs,
leaf_type=leaf_type,
dropout=cfg.dropout,
layer_type=cfg.einet.layer_type,
structure=cfg.einet.structure,
)
if cfg.mixture:
return Mixture(n_components=num_classes, config=config)
else:
return Einet(config)
def make_convpc(cfg, num_classes: int = 1) -> Mixture | ConvPc:
"""
Make ConvPc model based off the given arguments.
Args:
cfg: Arguments parsed from argparse.
num_classes: Number of classes to model.
Returns:
ConvPc model.
"""
image_shape = get_data_shape(cfg.dataset)
# leaf_kwargs, leaf_type = {"total_count": 255}, Binomial
leaf_kwargs, leaf_type = get_distribution(dist=cfg.dist, cfg=cfg)
config = ConvPcConfig(
channels=cfg.convpc.channels,
num_channels=image_shape.channels,
num_classes=num_classes,
leaf_kwargs=leaf_kwargs,
leaf_type=leaf_type,
structure=cfg.convpc.structure,
order=cfg.convpc.order,
kernel_size=cfg.convpc.kernel_size,
)
if cfg.mixture:
return Mixture(n_components=num_classes, config=config, data_shape=image_shape)
else:
return ConvPc(config=config, data_shape=image_shape)
class LitModel(pl.LightningModule, ABC):
"""
LightningModule for training a model using PyTorch Lightning.
Args:
cfg (DictConfig): Configuration dictionary.
name (str): Name of the model.
steps_per_epoch (int): Number of steps per epoch.
Attributes:
cfg (DictConfig): Configuration dictionary.
image_shape (ImageShape): Shape of the input data.
rtpt (RTPT): RTPT logger.
steps_per_epoch (int): Number of steps per epoch.
"""
def __init__(self, cfg: DictConfig, name: str, steps_per_epoch: int) -> None:
super().__init__()
self.cfg = cfg
self.image_shape = get_data_shape(cfg.dataset)
self.rtpt = RTPT(
name_initials="SB",
experiment_name="einet_" + name + ("_" + str(cfg.tag) if cfg.tag else ""),
max_iterations=cfg.epochs + 1,
)
self.save_hyperparameters()
self.steps_per_epoch = steps_per_epoch
def preprocess(self, data: torch.Tensor):
"""Preprocess data before passing it to the model."""
if self.cfg.dist == Dist.BINOMIAL:
data *= 255.0
return data
def configure_optimizers(self):
"""
Configure the optimizer and learning rate scheduler.
"""
optimizer = torch.optim.Adam(self.parameters(), lr=self.cfg.lr)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[int(0.7 * self.cfg.epochs), int(0.9 * self.cfg.epochs)],
gamma=0.1,
)
return [optimizer], [lr_scheduler]
def on_train_start(self) -> None:
self.rtpt.start()
def on_train_epoch_end(self) -> None:
self.rtpt.step()
class SpnGenerative(LitModel):
"""
A class representing a generative model based on Sum-Product Networks (SPNs).
Args:
cfg (DictConfig): A configuration dictionary.
steps_per_epoch (int): The number of steps per epoch.
Attributes:
spn (einet.EinSumProductNetwork): The SPN model.
"""
def __init__(self, cfg: DictConfig, steps_per_epoch: int):
super().__init__(cfg=cfg, name="gen", steps_per_epoch=steps_per_epoch)
if cfg.model == "einet":
self.spn = make_einet(cfg, num_classes=cfg.num_classes)
elif cfg.model == "convpc":
self.spn = make_convpc(cfg, num_classes=cfg.num_classes)
else:
raise ValueError(f"Unknown model {cfg.model}")
def training_step(self, train_batch, batch_idx):
data, labels = train_batch
data = self.preprocess(data)
nll = self.negative_log_likelihood(data)
self.log("Train/loss", nll, prog_bar=True)
return nll
def validation_step(self, val_batch, batch_idx):
data, labels = val_batch
data = self.preprocess(data)
nll = self.negative_log_likelihood(data)
self.log("Val/loss", nll, prog_bar=True)
return nll
def negative_log_likelihood(self, data, reduction="mean"):
"""
Compute negative log likelihood of data.
Args:
data: Data to compute negative log likelihood of.
reduction: Reduction method.
Returns:
Negative log likelihood of data.
"""
nll = -1 * self.spn(data)
if reduction == "mean":
return nll.mean()
elif reduction == "sum":
return nll.sum()
else:
raise ValueError(f"Unknown reduction {reduction}")
def generate_samples(self, num_samples: int, differentiable: bool):
"""
Generates a batch of samples from the model.
Args:
num_samples (int): The number of samples to generate.
differentiable (bool): Whether to use a differentiable sampling method.
Returns:
torch.Tensor: A tensor of shape (num_samples, *self.image_shape) containing the generated samples.
"""
if not differentiable:
samples = self.spn.sample(num_samples=num_samples, mpe_at_leaves=True).view(-1, *self.image_shape)
else:
samples = self.spn.sample(num_samples=num_samples, mpe_at_leaves=True, is_differentiable=True).view(
-1, *self.image_shape
)
samples = samples / 255.0
return samples
def on_train_epoch_end(self):
with torch.no_grad():
samples = self.generate_samples(num_samples=64, differentiable=False)
grid = torchvision.utils.make_grid(samples.data[:64], nrow=8, pad_value=0.0, normalize=True)
self.logger.log_image(key="samples", images=[grid])
# samples_diff = self.generate_samples(num_samples=64, differentiable=True)
# grid_diff = torchvision.utils.make_grid(samples_diff.data[:64], nrow=8, pad_value=0.0, normalize=True)
# self.logger.log_image(key="samples_diff", images=[grid_diff])
super().on_train_epoch_end()
def test_step(self, batch, batch_idx, dataloader_idx=0):
data, labels = batch
data = self.preprocess(data)
nll = self.negative_log_likelihood(data)
set_name = DATALOADER_ID_TO_SET_NAME[dataloader_idx]
self.log(f"Test/{set_name}_nll", nll, add_dataloader_idx=False)
class SpnDiscriminative(LitModel):
"""
Discriminative SPN model. Models the class conditional data distribution at its C root nodes.
"""
def __init__(self, cfg: DictConfig, steps_per_epoch: int):
super().__init__(cfg, name="disc", steps_per_epoch=steps_per_epoch)
# Construct SPN
if cfg.model == "einet":
self.spn = make_einet(cfg, num_classes=cfg.num_classes)
elif cfg.model == "convpc":
self.spn = make_convpc(cfg, num_classes=cfg.num_classes)
else:
raise ValueError(f"Unknown model {cfg.model}")
# Define loss function
self.criterion = nn.NLLLoss()
def training_step(self, train_batch, batch_idx):
loss, accuracy = self._get_cross_entropy_and_accuracy(train_batch)
self.log("Train/accuracy", accuracy, on_step=True, prog_bar=True)
self.log("Train/loss", loss, on_step=True)
return loss
def validation_step(self, val_batch, batch_idx):
loss, accuracy = self._get_cross_entropy_and_accuracy(val_batch)
self.log("Val/accuracy", accuracy, prog_bar=True)
self.log("Val/loss", loss)
return loss
def test_step(self, batch, batch_idx, dataloader_idx=0):
loss, accuracy = self._get_cross_entropy_and_accuracy(batch)
set_name = DATALOADER_ID_TO_SET_NAME[dataloader_idx]
self.log(f"Test/{set_name}_accuracy", accuracy, add_dataloader_idx=False)
def _get_cross_entropy_and_accuracy(self, batch) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute cross entropy loss and accuracy of batch.
Args:
batch: Batch of data.
Returns:
Tuple of (cross entropy loss, accuracy).
"""
data, labels = batch
data = self.preprocess(data)
ll_y_g_x = self.spn.posterior(data)
# Criterion is NLL which takes logp( y | x)
# NOTE: Don't use nn.CrossEntropyLoss because it expects unnormalized logits
# and applies LogSoftmax first
loss = self.criterion(ll_y_g_x, labels)
accuracy = (labels == ll_y_g_x.argmax(-1)).sum() / ll_y_g_x.shape[0]
return loss, accuracy