-
Notifications
You must be signed in to change notification settings - Fork 175
/
train_imagenet.py
149 lines (117 loc) · 5.38 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train Imagenet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
import utils_ori as utils
import model
tfgan = tf.contrib.gan
gfile = tf.gfile
flags.DEFINE_string('master', 'local',
'BNS name of the TensorFlow master to use. [local]')
# flags.DEFINE_string('checkpoint_dir', '/usr/local/google/home/zhanghan/Documents/Research/model_output',
# 'Directory name to save the checkpoints. [checkpoint]')
flags.DEFINE_string('checkpoint_dir', 'checkpoint',
'Directory name to save the checkpoints. [checkpoint]')
flags.DEFINE_integer('batch_size', 64, 'Number of images in input batch. [64]') # ori 16
flags.DEFINE_integer('shuffle_buffer_size', 100000, 'Number of records to load '
'before shuffling and yielding for consumption. [100000]')
flags.DEFINE_integer('save_summaries_steps', 200, 'Number of seconds between '
'saving summary statistics. [1]') # default 300
flags.DEFINE_integer('save_checkpoint_secs', 1200, 'Number of seconds between '
'saving checkpoints of model. [1200]')
flags.DEFINE_boolean('is_train', True, 'True for training. [default: True]')
flags.DEFINE_boolean('is_gd_equal', True, 'True for 1:1, False for 1:5')
# TODO(olganw) Find the best way to clean up these flags for eval and train.
flags.DEFINE_integer('task', 0, 'The task id of the current worker. [0]')
flags.DEFINE_integer('ps_tasks', 0, 'The number of ps tasks. [0]')
flags.DEFINE_integer('num_workers', 1, 'The number of worker tasks. [1]')
flags.DEFINE_integer('replicas_to_aggregate', 1, 'The number of replicas '
'to aggregate for synchronous optimization [1]')
flags.DEFINE_boolean('sync_replicas', True, 'Whether to sync replicas. [True]')
flags.DEFINE_integer('num_towers', 4, 'The number of GPUs to use per task. [1]')
flags.DEFINE_integer('d_step', 1, 'The number of D_step')
flags.DEFINE_integer('g_step', 1, 'The number of G_step')
# flags.DEFINE_integer('z_dim', 128, 'The dimension of z')
FLAGS = flags.FLAGS
def main(_, is_test=False):
print('d_learning_rate', FLAGS.discriminator_learning_rate)
print('g_learning_rate', FLAGS.generator_learning_rate)
print('data_dir', FLAGS.data_dir)
print(FLAGS.loss_type, FLAGS.batch_size, FLAGS.beta1)
print('gf_df_dim', FLAGS.gf_dim, FLAGS.df_dim)
print('Starting the program..')
gfile.MakeDirs(FLAGS.checkpoint_dir)
model_dir = '%s_%s' % ('imagenet', FLAGS.batch_size)
logdir = os.path.join(FLAGS.checkpoint_dir, model_dir)
gfile.MakeDirs(logdir)
graph = tf.Graph()
with graph.as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
# Instantiate global_step.
global_step = tf.train.create_global_step()
# Create model with FLAGS, global_step, and devices.
devices = ['/gpu:{}'.format(tower) for tower in range(FLAGS.num_towers)]
# Create noise tensors
zs = utils.make_z_normal(
FLAGS.num_towers, FLAGS.batch_size, FLAGS.z_dim)
print('save_summaries_steps', FLAGS.save_summaries_steps)
dcgan = model.SNGAN(
zs=zs,
config=FLAGS,
global_step=global_step,
devices=devices)
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
# Create sync_hooks when needed.
if FLAGS.sync_replicas and FLAGS.num_workers > 1:
print('condition 1')
sync_hooks = [
dcgan.d_opt.make_session_run_hook(FLAGS.task == 0),
dcgan.g_opt.make_session_run_hook(FLAGS.task == 0)
]
else:
print('condition 2')
sync_hooks = []
train_ops = tfgan.GANTrainOps(
generator_train_op=dcgan.g_optim,
discriminator_train_op=dcgan.d_optim,
global_step_inc_op=dcgan.increment_global_step)
# We set allow_soft_placement to be True because Saver for the DCGAN model
# gets misplaced on the GPU.
session_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
if is_test:
return graph
print("G step: ", FLAGS.g_step)
print("D_step: ", FLAGS.d_step)
train_steps = tfgan.GANTrainSteps(FLAGS.g_step, FLAGS.d_step)
tfgan.gan_train(
train_ops,
get_hooks_fn=tfgan.get_sequential_train_hooks(
train_steps=train_steps),
hooks=([tf.train.StopAtStepHook(num_steps=2000000)] + sync_hooks),
logdir=logdir,
# master=FLAGS.master,
# scaffold=scaffold, # load from google checkpoint
is_chief=(FLAGS.task == 0),
save_summaries_steps=FLAGS.save_summaries_steps,
save_checkpoint_secs=FLAGS.save_checkpoint_secs,
config=session_config)
if __name__ == '__main__':
tf.app.run()