forked from LibreScanner/horus-fw
-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathlimits.c
221 lines (195 loc) · 9.16 KB
/
limits.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2012-2014 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <util/delay.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include "stepper.h"
#include "settings.h"
#include "nuts_bolts.h"
#include "config.h"
#include "spindle_control.h"
#include "motion_control.h"
#include "planner.h"
#include "protocol.h"
#include "limits.h"
#include "report.h"
void limits_init()
{
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
if (bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) {
LIMIT_PORT &= ~(LIMIT_MASK); // Normal low operation. Requires external pull-down.
} else {
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
}
if (bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE)) {
LIMIT_PCMSK |= LIMIT_MASK; // Enable specific pins of the Pin Change Interrupt
PCICR |= (1 << LIMIT_INT); // Enable Pin Change Interrupt
} else {
limits_disable();
}
#ifdef ENABLE_SOFTWARE_DEBOUNCE
MCUSR &= ~(1<<WDRF);
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = (1<<WDP0);
#endif
}
void limits_disable()
{
LIMIT_PCMSK &= ~LIMIT_MASK; // Disable specific pins of the Pin Change Interrupt
PCICR &= ~(1 << LIMIT_INT); // Disable Pin Change Interrupt
}
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
// bouncing pin without a debouncing method.
// NOTE: Do not attach an e-stop to the limit pins, because this interrupt is disabled during
// homing cycles and will not respond correctly. Upon user request or need, there may be a
// special pinout for an e-stop, but it is generally recommended to just directly connect
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
#ifdef ENABLE_SOFTWARE_DEBOUNCE
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
ISR(WDT_vect)
{
WDTCSR &= ~(1<<WDIE);
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
#ifndef LIMIT_SWITCHES_ACTIVE_HIGH
if ((LIMIT_PIN & LIMIT_MASK) ^ LIMIT_MASK) {
#else
if (LIMIT_PIN & LIMIT_MASK) {
#endif
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
}
#else
ISR(LIMIT_INT_vect)
{
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
// limit setting if their limits are constantly triggering after a reset and move their axes.
if (sys.state != STATE_ALARM) {
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
mc_reset(); // Initiate system kill.
sys.execute |= EXEC_CRIT_EVENT; // Indicate hard limit critical event
}
}
}
#endif
// Moves specified cycle axes all at homing rate, either approaching or disengaging the limit
// switches. Homing is a special motion case, where there is only an acceleration followed
// by abrupt asynchronous stops by each axes reaching their limit switch independently. The
// asynchronous stops are handled by a system level axis lock mask, which prevents the stepper
// algorithm from executing step pulses.
// NOTE: Only the abort runtime command can interrupt this process.
void limits_go_home(uint8_t cycle_mask, bool approach, float homing_rate)
{
if (sys.execute & EXEC_RESET) { return; }
uint8_t invert_pin;
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { invert_pin = approach; }
else { invert_pin = !approach; }
// Determine travel distance to the furthest homing switch based on user max travel settings.
// NOTE: settings.max_travel[] is stored as a negative value.
float max_travel = settings.max_travel[X_AXIS];
if (max_travel > settings.max_travel[Y_AXIS]) { max_travel = settings.max_travel[Y_AXIS]; }
if (max_travel > settings.max_travel[Z_AXIS]) { max_travel = settings.max_travel[Z_AXIS]; }
max_travel *= -1.25; // Ensure homing switches engaged by over-estimating max travel.
if (!approach) { max_travel = -max_travel; }
// Set target location and rate for active axes.
float target[N_AXIS];
uint8_t n_active_axis = 0;
uint8_t i;
for (i=0; i<N_AXIS; i++) {
if (bit_istrue(cycle_mask,bit(i))) {
n_active_axis++;
target[i] = max_travel;
} else {
target[i] = 0.0;
}
}
if (bit_istrue(settings.homing_dir_mask,(1<<X_LIMIT_BIT))) { target[X_AXIS] = -target[X_AXIS]; }
if (bit_istrue(settings.homing_dir_mask,(1<<Y_LIMIT_BIT))) { target[Y_AXIS] = -target[Y_AXIS]; }
if (bit_istrue(settings.homing_dir_mask,(1<<Z_LIMIT_BIT))) { target[Z_AXIS] = -target[Z_AXIS]; }
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
// Setup homing axis locks based on cycle mask.
uint8_t axislock = 0;
if (bit_istrue(cycle_mask,bit(X_AXIS))) { axislock |= (1<<X_STEP_BIT); }
if (bit_istrue(cycle_mask,bit(Y_AXIS))) { axislock |= (1<<Y_STEP_BIT); }
if (bit_istrue(cycle_mask,bit(Z_AXIS))) { axislock |= (1<<Z_STEP_BIT); }
sys.homing_axis_lock = axislock;
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
uint8_t limit_state;
plan_buffer_line(target, homing_rate, false); // Bypass mc_line(). Directly plan homing motion.
st_prep_buffer(); // Prep first segment from newly planned block.
st_wake_up(); // Initiate motion
do {
// Check limit state. Lock out cycle axes when they change.
limit_state = LIMIT_PIN;
if (invert_pin) { limit_state ^= LIMIT_MASK; }
// if (axislock & (1<<X_STEP_BIT)) {
if (limit_state & (1<<X_LIMIT_BIT)) { axislock &= ~(1<<X_STEP_BIT); }
// }
// if (axislock & (1<<Y_STEP_BIT)) {
if (limit_state & (1<<Y_LIMIT_BIT)) { axislock &= ~(1<<Y_STEP_BIT); }
// }
// if (axislock & (1<<Z_STEP_BIT)) {
if (limit_state & (1<<Z_LIMIT_BIT)) { axislock &= ~(1<<Z_STEP_BIT); }
// }
sys.homing_axis_lock = axislock;
st_prep_buffer(); // Check and prep one segment. NOTE: Should take no longer than 200us.
if (sys.execute & EXEC_RESET) { return; }
} while (STEP_MASK & axislock);
st_go_idle(); // Disable steppers. Axes motion should already be locked.
plan_reset(); // Reset planner buffer. Ensure homing motion is cleared.
st_reset(); // Reset step segment buffer. Ensure homing motion is cleared.
delay_ms(settings.homing_debounce_delay); // Delay to allow transient dynamics to dissipate.
}
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
// and the workspace volume is in all negative space.
void limits_soft_check(float *target)
{
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { // NOTE: max_travel is stored as negative
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
// workspace volume so just come to a controlled stop so position is not lost. When complete
// enter alarm mode.
if (sys.state == STATE_CYCLE) {
st_feed_hold();
while (sys.state == STATE_HOLD) {
protocol_execute_runtime();
if (sys.abort) { return; }
}
}
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
sys.execute |= EXEC_CRIT_EVENT; // Indicate soft limit critical event
protocol_execute_runtime(); // Execute to enter critical event loop and system abort
return;
}
}
}