-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
227 lines (147 loc) · 6.05 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import numpy.linalg as la
from numpy.random import randn
import gnuplot.gnuplot as gp
def cov(X):
"""
Covariance matrix
note: specifically for mean-centered data
note: numpy's `cov` uses N-1 as normalization
"""
return np.dot(X.T, X) / X.shape[0]
def pca(data, fraction=0.8, n_comp=None):
"""
Principal component analysis using eigenvalues
note: this mean-centers and auto-scales the data (in-place)
"""
data -= np.mean(data, 0)
data /= np.std(data, 0)
C = cov(data)
E, V = la.eigh(C)
if n_comp is not None:
key = np.argsort(E)[::-1][:n_comp]
E, V = E[key], V[:, key]
else:
sumvariance = np.cumsum(E)
sumvariance /= sumvariance[-1]
key = data.shape[1] - np.searchsorted(sumvariance, fraction)
E, V = E[-key:], V[:, -key:]
U = np.dot(data, V)
return U, E, V
def hmean(array, **kwargs):
return 1 / np.nanmean(1 / array, **kwargs)
def gmean(array, axis=0, **kwargs):
return np.power(np.nanprod(array, axis=axis, **kwargs), -array.shape[axis])
def skewness(array, **kwargs):
mean = np.nanmean(array, **kwargs)
std = np.sqrt(np.nanmean(np.abs(array - mean)**2, **kwargs))
return 3 * (mean - np.nanmedian(array, **kwargs)) / std
def normal(x, mean, std):
std2 = std ** 2
return np.exp(-0.5 * ((x - mean)**2) / std2) / np.sqrt(2 * np.pi * std2)
def lognormal(x, mean, std):
std2 = std ** 2
return np.exp(-0.5 * ((np.log(x) - mean)**2) / std2) \
/ (x * np.sqrt(2 * np.pi * std2))
class Distro(object):
def __init__(self, area=None, mean=None, std=None, var=None):
self._area, self._mean, self._std, self._var = \
area, mean, std, var
def calc_attribute(self, attr, fun, **kwargs):
attr = getattr(self, attr)
if attr is None or kwargs.get("update", False):
attr = fun(*args, **kwargs)
return attr
class PDF(Distro):
def __init__(self, x, pdf):
self.x = x
self.pdf = pdf
Distro.__init__(self)
def area(self, **kwargs):
return Distro.calc_attribute(self, "area", np.trapz,
(self.pdf, self.x), **kwargs)
def mean(self, **kwargs):
return Distro.calc_attribute(self, "mean", np.trapz,
(self.x * self.pdf, self.x), **kwargs)
def var(self, **kwargs):
return Distro.calc_attribute(self, "var", np.trapz,
(self.x * self.pdf, self.x), **kwargs)
def mean(self, **kwargs):
#Distro.mean(np.trapz, (self.pdf, self.x),
if self._mean is None or kwargs.get("update", False):
self._mean = np.trapz(self.x * self.pdf, self.x, **kwargs)
return self._mean
def var(self, **kwargs):
if self._var is None or kwargs.get("update", False):
arg = self.pdf * (self.x - self.mean(**kwargs))**2
self._var = np.trapz(arg, self.x)
return self._var
def std(self, **kwargs):
if self._std is None or kwargs.get("update", False):
self._std = np.sqrt(self.var(**kwargs))
return self._std
def skewness(self, **kwargs):
return 3 * (self.mean(**kwargs) - np.nanmedian(array, **kwargs)) \
/ self.std(**kwargs)
class Histo(Distro):
def __init__(self, x, **kwargs):
self.histo, self.edges = np.histogram(x, **kwargs)
Distro.__init__(self)
self.cedges = None, None, None, None
def cent_edges(self, update=False):
if self.cedges is None or update:
self.cedges = self.edges[:-1] + (self.edges[1] - self.edges[0]) / 2.0
return self.cedges
def area(self, **kwargs):
if self._area is None or kwargs.get("update", False):
self._area = np.sum(self.histo, **kwargs)
return self._area
def mean(self, **kwargs):
if self._mean is None or kwargs.get("update", False):
self._mean = np.nanmean(self.histo, **kwargs)
return self._mean
def var(self, **kwargs):
if self._var is None or kwargs.get("update", False):
self._var = np.sum((self.histo - self.mean())**2)
return self._var
def std(self, **kwargs):
if self._std is None or kwargs.get("update", False):
self._std = np.sqrt(self.var(**kwargs))
return self._std
def hmean(self, **kwargs):
return 1 / np.nanmean(1 / self.histo, **kwargs)
def gmean(self, axis=0, **kwargs):
return np.power(np.nanprod(self.histo, axis=axis, **kwargs),
-array.shape[axis])
def skewness(self, **kwargs):
return 3 * (self.mean(**kwargs) - np.nanmedian(self.histo, **kwargs)) \
/ self.std(**kwargs)
def main():
""" test data """
data = np.array([randn(8) for k in range(150)])
data[:50, 2:4] += 10
data[50:, 2:5] += 10
""" visualize """
gp.output("pca.png", term="pngcairo", size=(1000,800))
gp.multiplot(4, nrows=2)
gp.title("Original")
gp.plot_data(data[:50, 0], data[:50, 1], ptype="points", pt="o")
gp.plot_data(data[50:, 0], data[50:, 1], ptype="points", pt="x")
gp.plot()
gp.title("PCA Fraction 0.2")
trans = pca(data, fraction=0.2)[0]
gp.plot_data(trans[:50, 0], trans[:50, 1], ptype="points", pt="o")
gp.plot_data(trans[50:, 0], trans[50:, 1], ptype="points", pt="x")
gp.plot()
gp.title("PCA Fraction 0.8")
trans = pca(data, fraction=0.8)[0]
gp.plot_data(trans[:50, 0], trans[:50, 1], ptype="points", pt="o")
gp.plot_data(trans[50:, 0], trans[50:, 1], ptype="points", pt="x")
gp.plot()
gp.title("PCA first 2 components")
trans = pca(data, n_comp=2)[0]
gp.plot_data(trans[:50, 0], trans[:50, 1], ptype="points", pt="o")
gp.plot_data(trans[50:, 0], trans[50:, 1], ptype="points", pt="x")
gp.plot()
if __name__ == "__main__":
main()