-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdevice.par
329 lines (261 loc) · 7.35 KB
/
sdevice.par
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
Material = "InGaAs" {
Bandgap {
* parameters from InGaAs_SDeviceElectrostaticParams_Helen.txt (for xGa=0.47)
* parameter Eg0:
Tpar = 300 # [K]
Chi0 = 4.63331683 # [eV] # xGa=0.47, at 300K
Eg0 = 0.9735 # [eV] # xGa=0.47, at 300K
}
Epsilon {
* parameters from InGaAs_SDeviceElectrostaticParams_Helen.txt (for xGa=0.47)
epsilon= 13.6420 #xGa=0.47
}
Epsilon_aniso {
* parameters from InGaAs_SDeviceElectrostaticParams_Helen.txt (for xGa=0.47)
epsilon= 13.6420 #xGa=0.47
}
eDOSMass {
* parameters from InGaAs_SDeviceElectrostaticParams_Helen.txt (for xGa=0.47)
Formula = 2
Nc300 = 4.0820E+17 # xGa=0.47
}
hDOSMass {
* parameters from InGaAs_SDeviceElectrostaticParams_Helen.txt (for xGa=0.47)
Formula = 2
Nv300 = 1.0883E+19 # xGa=0.47
}
MultiValley {
eValley"Gamma"(m=@masstl@ alpha=@alpha@ energy=0.139303089370000 dospower=@dospower@ )
eValley"Gamma1"(m=@masstl@ alpha=@alpha@ energy=0.316526435826000 dospower=@dospower@ )
eValley"Gamma2"(m=@masstl@ alpha=@alpha@ energy=0.316526953632000 dospower=@dospower@ )
eValley"Gamma3"(m=@masstl@ alpha=@alpha@ energy=0.449801414669000 dospower=@dospower@ )
eValley"Gamma4"(m=@masstl@ alpha=@alpha@ energy=0.537072271896000 dospower=@dospower@ )
}
ConstantMobility:
{ * mu_const = mumax (T/T0)^(-Exponent)
* Mole fraction dependent model.
* If only constant parameters are specified, those values will be
* used for any mole fraction instead of the interpolation below.
* Linear interpolation is used on the interval [0,1].
Exponent(0) = 1.5, 1.5 #[1]
Exponent(1) = 1, 2.1 #[1]
mumax(0) = @uchannel@, 2.5000e+02 #[cm^2/(Vs)]
mumax(1) = @uchannel@, 4.0000e+02 #[cm^2/(Vs)]
mutunnel(0) = 0.05, 0.05 #[cm^2/(Vs)]
mutunnel(1) = 0.05, 0.05 #[cm^2/(Vs)]
}
pmi_HighFieldMobility2{
* Caughey-Thomas model:
* mu_highfield = mu_lowfield / ( 1 + (mu_lowfield E / vsat)^beta )^1/beta
* beta = beta0 (T/T0)^betaexp.
beta0 = 1 # [1]
betaexp = 0 # [1]
* For vsat either Formula1 or Formula2 can be used.
Vsat_Formula = 1 # [1]
* Formula1 for saturation velocity:
* vsat = vsat0 (T/T0)^(-Vsatexp)
* (Parameter Vsat_Formula has to be not equal to 2):
vsat0 = 10e+10 # [1]
vsatexp = 0 # [1]
}
Band2BandTunneling
{
##QuantumPotentialPosFac= 1
Apath=0
Bpath=0
Cpath=@gc@
degeneracy=2 ##why is 2??
Dpath=0
m_c= @mctunneling@
m_v= @mvtunneling@
Ppath=0
}
Scharfetter * relation and trap level for SRH recombination:
{ * tau = taumin + ( taumax - taumin ) / ( 1 + ( N/Nref )^gamma)
* tau(T) = tau * ( (T/300)^Talpha ) (TempDep)
* tau(T) = tau * exp( Tcoeff * ((T/300)-1) ) (ExpTempDep)
taumin = 0 , 0 # [s]
taumax = 1e-8 , 1e-9 # [s]
Nref = 1.0000e+25 , 1.0000e+25 # [cm^(-3)] to eliminate term ( 1 + ( N/Nref )^gamma)
gamma = 1 , 1 # [1]
Talpha = 0.0000e+00 , 0.0000e+00 # [1]
Tcoeff = 0.0000e+00 , 0.0000e+00 # [1]
Etrap = 0.0000e+00 # [eV]
}
Auger * coefficients:
{ * R_Auger = ( C_n n + C_p p ) ( n p - ni_eff^2)
* with C_n,p = (A + B (T/T0) + C (T/T0)^2) (1 + H exp(-{n,p}/N0))
A = 2.5e-28 , 2.5e-28 # [cm^6/s]
B = 0.0000e+00 , 0.0000e+00 # [cm^6/s]
C = 0.0000e+00 , 0.0000e+00 # [cm^6/s]
H = 0.0000e+00 , 0.0000e+00 # [1]
N0 = 1.0000e+10 , 1.0000e+10 # [cm^(-3)] small value to get rid of the term, normal e+18ls
}
BarrierTunneling
{
* turning the quantum correction off
alpha = 1, 1
mt = @mctunneling@, @mvtunneling@
g = @gc@, @gv@
}
LatticeParameters
{
X=(1,0,0)
Y=(0,1,0)
}
QuantumPotentialParameters "100"
{ * Parameters extracted for "100" orientation
Xmax (0) = 0.0
Xmax (1) = 0.1
Xmax (2) = 0.2
Xmax (3) = 0.3
Xmax (4) = 0.4
Xmax (5) = 0.5
Xmax (6) = 0.6
Xmax (7) = 0.7
Xmax (8) = 0.8
Xmax (9) = 0.9
Xmax (10) = 1.0
* For bulk configuration
gamma = @gammavertical@ , 4.5 # [1] #see InAs
theta = 0.5 , 0.5 # [1]
xi = 1 , 1 # [1]
eta = 1 , 1 # [1]
nu = 0.0000e+00 , 0.0000e+00 #
alpha[1] = @alphavert@, @alphavert@
alpha[2] = @alphavert@, @alphavert@
alpha[3] = @alphahor@, @alphahor@
}
QuantumPotentialParameters "110"
{ * Parameters extracted for "100" orientation
Xmax (0) = 0.0
Xmax (1) = 0.1
Xmax (2) = 0.2
Xmax (3) = 0.3
Xmax (4) = 0.4
Xmax (5) = 0.5
Xmax (6) = 0.6
Xmax (7) = 0.7
Xmax (8) = 0.8
Xmax (9) = 0.9
Xmax (10) = 1.0
* For bulk configuration
gamma = @gammavertical@ , 4.5 # [1] #see InAs
theta = 0.5 , 0.5 # [1]
xi = 1 , 1 # [1]
eta = 1 , 1 # [1]
nu = 0.0000e+00 , 0.0000e+00 #
alpha[1] = @alphavert@, @alphavert@
alpha[2] = @alphavert@, @alphavert@
alpha[3] = @alphahor@, @alphahor@
}
}
Material = "HfO2" {
Epsilon
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 22.0 # [1]
}
Epsilon_aniso
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 22.0 # [1]
}
Bandgap
{ * Eg = Eg0 + dEg0 + alpha Tpar^2 / (beta + Tpar) - alpha T^2 / (beta + T#an appropriate BGN model, if this BGN model is chosen in Physics section
* Parameter 'Tpar' specifies the value of lattice
* temperature, at which parameters below are defined
* Chi0 is electron affinity.
Chi0 = 2.05 # [eV]
Eg0 = 6.0 # [eV]
Tpar = 300 # [K]
}
LatticeParameters
{
X=(1,0,0)
Y=(0,1,0)
}
QuantumPotentialParameters "100"
{
gamma = @oxidegamma@, 4.310
theta = 0.5 , 0.5 # [1]
xi = 1 , 1 # [1]
eta = 1 , 1 # [1]
nu = 0.0000e+00 , 0.0000e+00 # [1]
alpha[1] = @alphavert@, @alphavert@
alpha[2] = @alphavert@, @alphavert@
alpha[3] = @alphahor@, @alphahor@
}
QuantumPotentialParameters "110"
{
gamma = @oxidegamma@, 4.310
theta = 0.5 , 0.5 # [1]
xi = 1 , 1 # [1]
eta = 1 , 1 # [1]
nu = 0.0000e+00 , 0.0000e+00 # [1]
alpha[1] = @alphavert@, @alphavert@
alpha[2] = @alphavert@, @alphavert@
alpha[3] = @alphahor@, @alphahor@
}
}
Region = "drain" {
ConstantMobility:
{ * mu_const = mumax (T/T0)^(-Exponent)
* Mole fraction dependent model.
* If only constant parameters are specified, those values will be
* used for any mole fraction instead of the interpolation below.
* Linear interpolation is used on the interval [0,1].
Exponent(0) = 1.5, 1.5 #[1]
Exponent(1) = 1, 2.1 #[1]
mumax(0) = @ucontact@, 2.5000e+02 #[cm^2/(Vs)]
mumax(1) = @ucontact@, 4.0000e+02 #[cm^2/(Vs)]
mutunnel(0) = 0.05, 0.05 #[cm^2/(Vs)]
mutunnel(1) = 0.05, 0.05 #[cm^2/(Vs)]
}
Band2BandTunneling
{
##QuantumPotentialPosFac= 1
Apath=0
Bpath=0
Cpath=@gc@
degeneracy=2 ##why is 2??
Dpath=0
m_c= @mctunneling@
m_v= @mvtunneling@
Ppath=0
}
}
Region = "source" {
ConstantMobility:
{ * mu_const = mumax (T/T0)^(-Exponent)
* Mole fraction dependent model.
* If only constant parameters are specified, those values will be
* used for any mole fraction instead of the interpolation below.
* Linear interpolation is used on the interval [0,1].
Exponent(0) = 1.5, 1.5 #[1]
Exponent(1) = 1, 2.1 #[1]
mumax(0) = @ucontact@, 2.5000e+02 #[cm^2/(Vs)]
mumax(1) = @ucontact@, 4.0000e+02 #[cm^2/(Vs)]
mutunnel(0) = 0.05, 0.05 #[cm^2/(Vs)]
mutunnel(1) = 0.05, 0.05 #[cm^2/(Vs)]
}
BarrierTunneling
{
* turning the quantum correction off
alpha = 1, 1
mt = @mctunneling@, @mvtunneling@
g = @gc@, @gv@
}
Band2BandTunneling
{
##QuantumPotentialPosFac= 1
Apath=0
Bpath=0
Cpath=@gc@
degeneracy=2 ##why is 2??
Dpath=0
m_c= @mctunneling@
m_v= @mvtunneling@
Ppath=0
}
}