Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix CombinedImuFactor #882

Merged
merged 13 commits into from
Jul 5, 2022
805 changes: 760 additions & 45 deletions doc/ImuFactor.lyx

Large diffs are not rendered by default.

Binary file modified doc/ImuFactor.pdf
Binary file not shown.
Binary file added doc/PreintegratedIMUJacobians.pdf
Binary file not shown.
88 changes: 67 additions & 21 deletions doc/refs.bib
Original file line number Diff line number Diff line change
@@ -1,26 +1,72 @@
%% This BibTeX bibliography file was created using BibDesk.
%% https://bibdesk.sourceforge.io/

%% Created for Varun Agrawal at 2021-09-27 17:39:09 -0400


%% Saved with string encoding Unicode (UTF-8)



@article{Lupton12tro,
author = {Lupton, Todd and Sukkarieh, Salah},
date-added = {2021-09-27 17:38:56 -0400},
date-modified = {2021-09-27 17:39:09 -0400},
doi = {10.1109/TRO.2011.2170332},
journal = {IEEE Transactions on Robotics},
number = {1},
pages = {61-76},
title = {Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions},
volume = {28},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1109/TRO.2011.2170332}}

@inproceedings{Forster15rss,
author = {Christian Forster and Luca Carlone and Frank Dellaert and Davide Scaramuzza},
booktitle = {Robotics: Science and Systems},
date-added = {2021-09-26 20:44:41 -0400},
date-modified = {2021-09-26 20:45:03 -0400},
title = {IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation},
year = {2015}}

@article{Iserles00an,
title = {Lie-group methods},
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
volume = {9},
pages = {215--365},
year = {2000},
publisher = {Cambridge Univ Press}
}
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
pages = {215--365},
publisher = {Cambridge Univ Press},
title = {Lie-group methods},
volume = {9},
year = {2000}}

@book{Murray94book,
title = {A mathematical introduction to robotic manipulation},
author = {Murray, Richard M and Li, Zexiang and Sastry, S
Shankar and Sastry, S Shankara},
year = {1994},
publisher = {CRC press}
}
author = {Murray, Richard M and Li, Zexiang and Sastry, S Shankar and Sastry, S Shankara},
publisher = {CRC press},
title = {A mathematical introduction to robotic manipulation},
year = {1994}}

@book{Spivak65book,
title = {Calculus on manifolds},
author = {Spivak, Michael},
volume = {1},
year = {1965},
publisher = {WA Benjamin New York}
}
author = {Spivak, Michael},
publisher = {WA Benjamin New York},
title = {Calculus on manifolds},
volume = {1},
year = {1965}}

@phdthesis{Nikolic16thesis,
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
author={Nikolic, Janosch},
year={2016},
school={ETH Zurich}
}

@book{Simon06book,
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
author={Simon, Dan},
year={2006},
publisher={John Wiley \& Sons}
}

@inproceedings{Trawny05report_IndirectKF,
title={Indirect Kalman Filter for 3 D Attitude Estimation},
author={Nikolas Trawny and Stergios I. Roumeliotis},
year={2005}
}
19 changes: 10 additions & 9 deletions examples/CombinedImuFactorsExample.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -60,13 +60,14 @@ namespace po = boost::program_options;

po::variables_map parseOptions(int argc, char* argv[]) {
po::options_description desc;
desc.add_options()("help,h", "produce help message")(
"data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data")(
"output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use")("use_isam", po::bool_switch(),
"use ISAM as the optimizer");
desc.add_options()("help,h", "produce help message") // help message
("data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data") // path to the data file
("output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use") // filename to save results to
("use_isam", po::bool_switch(),
"use ISAM as the optimizer"); // flag for ISAM optimizer

po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
Expand Down Expand Up @@ -106,7 +107,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration

auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
Expand All @@ -122,7 +123,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInit = bias_acc_omega_init;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Renaming breaks API and I really think it was meant to be "int" for "integration"

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nope, we have integrationCovariance in PreintegrationParams.h for integration. This was a typo that I fixed.


return p;
}
Expand Down
4 changes: 2 additions & 2 deletions examples/ImuFactorsExample.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same

I_6x6 * 1e-5; // error in the bias used for preintegration

auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
Expand All @@ -110,7 +110,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInit = bias_acc_omega_init;

return p;
}
Expand Down
1 change: 1 addition & 0 deletions gtsam/base/Vector.h
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
GTSAM_MAKE_VECTOR_DEFS(15)

typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;
Expand Down
84 changes: 61 additions & 23 deletions gtsam/navigation/CombinedImuFactor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ void PreintegrationCombinedParams::print(const string& s) const {
<< endl;
cout << "biasOmegaCovariance:\n[\n" << biasOmegaCovariance << "\n]"
<< endl;
cout << "biasAccOmegaInt:\n[\n" << biasAccOmegaInt << "\n]"
cout << "biasAccOmegaInit:\n[\n" << biasAccOmegaInit << "\n]"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same

<< endl;
}

Expand All @@ -52,7 +52,7 @@ bool PreintegrationCombinedParams::equals(const PreintegratedRotationParams& oth
tol) &&
equal_with_abs_tol(biasOmegaCovariance, e->biasOmegaCovariance,
tol) &&
equal_with_abs_tol(biasAccOmegaInt, e->biasAccOmegaInt, tol);
equal_with_abs_tol(biasAccOmegaInit, e->biasAccOmegaInit, tol);
}

//------------------------------------------------------------------------------
Expand Down Expand Up @@ -93,9 +93,14 @@ void PreintegratedCombinedMeasurements::resetIntegration() {
//------------------------------------------------------------------------------
void PreintegratedCombinedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
if (dt <= 0) {
throw std::runtime_error(
"PreintegratedCombinedMeasurements::integrateMeasurement: dt <=0");
}

// Update preintegrated measurements.
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix9 A; // Jacobian wrt preintegrated measurements without bias (df/dx)
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);

// Update preintegrated measurements covariance: as in [2] we consider a first
Expand All @@ -105,47 +110,80 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
// and preintegrated measurements

// Single Jacobians to propagate covariance
// TODO(frank): should we not also account for bias on position?
Matrix3 theta_H_biasOmega = -C.topRows<3>();
Matrix3 vel_H_biasAcc = -B.bottomRows<3>();
Matrix3 theta_H_omega = C.topRows<3>();
Matrix3 pos_H_acc = B.middleRows<3>(3);
Matrix3 vel_H_acc = B.bottomRows<3>();

Matrix3 theta_H_biasOmegaInit = -theta_H_omega;
Matrix3 pos_H_biasAccInit = -pos_H_acc;
Matrix3 vel_H_biasAcc = -vel_H_acc;
Matrix3 vel_H_biasAccInit = -vel_H_acc;

// overall Jacobian wrt preintegrated measurements (df/dx)
Eigen::Matrix<double, 15, 15> F;
F.setZero();
F.block<9, 9>(0, 0) = A;
F.block<3, 3>(0, 12) = theta_H_biasOmega;
F.block<3, 3>(6, 9) = vel_H_biasAcc;
F.block<3, 3>(0, 12) = theta_H_omega;
F.block<3, 3>(3, 9) = pos_H_acc;
F.block<3, 3>(6, 9) = vel_H_acc;
F.block<6, 6>(9, 9) = I_6x6;

// Update the uncertainty on the state (matrix F in [4]).
preintMeasCov_ = F * preintMeasCov_ * F.transpose();

// propagate uncertainty
// TODO(frank): use noiseModel routine so we can have arbitrary noise models.
const Matrix3& aCov = p().accelerometerCovariance;
const Matrix3& wCov = p().gyroscopeCovariance;
const Matrix3& iCov = p().integrationCovariance;
const Matrix6& bInitCov = p().biasAccOmegaInit;

// first order uncertainty propagation
// Optimized matrix multiplication (1/dt) * G * measurementCovariance *
// G.transpose()
// Optimized matrix mult: (1/dt) * G * measurementCovariance * G.transpose()
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
G_measCov_Gt.setZero(15, 15);

// BLOCK DIAGONAL TERMS
D_t_t(&G_measCov_Gt) = dt * iCov;
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc
* (aCov + p().biasAccOmegaInt.block<3, 3>(0, 0))
* (vel_H_biasAcc.transpose());
D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega
* (wCov + p().biasAccOmegaInt.block<3, 3>(3, 3))
* (theta_H_biasOmega.transpose());
D_R_R(&G_measCov_Gt) =
(theta_H_omega * (wCov / dt) * theta_H_omega.transpose()) //
+ (theta_H_biasOmegaInit * (bInitCov.block<3, 3>(3, 3) / dt) *
theta_H_biasOmegaInit.transpose());

D_t_t(&G_measCov_Gt) =
(pos_H_acc * (aCov / dt) * pos_H_acc.transpose()) //
+ (pos_H_biasAccInit * (bInitCov.block<3, 3>(0, 0) / dt) *
pos_H_biasAccInit.transpose()) //
+ (dt * iCov);

D_v_v(&G_measCov_Gt) =
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you restore the order in which these terms are computed for easier review, and comment on what has changed and why?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This order would be more aligned with the math and should make verifying it easier.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm saying it's harder for review. It's also not arbitrary. Maybe re-arrange the math. The order of Navstate is "attitude", "position", "velocity".

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm a bit confused. It's already in attitude-position-velocity order (D_R_R for attitude, D_t_t for position and D_v_v fro velocity). The prior code had it position-velocity-attitude which isn't the expected order.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@varunagrawal : besides the order of the pre-integrated measurements, can you point out what changed with respect to my (terrible) writeup? I think you added a second-order term in the position and changed how the covariances are discretized. were there other bugs you fixed with respect to my writeup? (i.e., was my writeup wrong, or only the implementation? or both? :-) )

also: is the order attitude-position-velocity now also used in the standard IMU factor? or only the combined?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I believe just the implementation was incorrect in certain places. @lucacarlone's overall writeup was pretty great and I just expanded upon that with additional information I picked up from other books and papers. :)
It's been a while since I've seen this math though so I may have added minor corrections where I found them which I don't remember of the top of my head.

As for the attitude-position-velocity order, this was not really an issue for ImuFactor since the expression for the jacobians was a lot simpler (G * C/dt * G')

Copy link
Collaborator Author

@varunagrawal varunagrawal Jul 3, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I looked at the differences again: I also changed the noise variable order from
$$\epsilon_{int}, \epsilon_{a}, \epsilon_{\omega}, \epsilon_{b^{a}_{init}} $$

$$\epsilon_{b^{\omega}{init}}, \epsilon{\Delta b^{a}}, \epsilon_{\Delta b^{\omega}}$$

to
$$\epsilon_{\omega}, \epsilon_{a}, \epsilon_{\Delta b^{a}}, \epsilon_{\Delta b^{\omega}}$$

$$\epsilon_{int}, \epsilon_{b^{a}{init}}, \epsilon{b^{\omega}_{init}}$$

(Apologies for the rendering issues. Seems like Github's Math mode is a bit buggy.)

(vel_H_acc * (aCov / dt) * vel_H_acc.transpose()) //
+ (vel_H_biasAccInit * (bInitCov.block<3, 3>(0, 0) / dt) *
vel_H_biasAccInit.transpose());

D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;

// OFF BLOCK DIAGONAL TERMS
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0)
* theta_H_biasOmega.transpose();
D_v_R(&G_measCov_Gt) = temp;
D_R_v(&G_measCov_Gt) = temp.transpose();
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
D_R_t(&G_measCov_Gt) = theta_H_biasOmegaInit *
(bInitCov.block<3, 3>(3, 0) / dt) *
pos_H_biasAccInit.transpose();
D_R_v(&G_measCov_Gt) = theta_H_biasOmegaInit *
(bInitCov.block<3, 3>(3, 0) / dt) *
vel_H_biasAccInit.transpose();
D_t_R(&G_measCov_Gt) = pos_H_biasAccInit * (bInitCov.block<3, 3>(0, 3) / dt) *
theta_H_biasOmegaInit.transpose();
D_t_v(&G_measCov_Gt) =
(pos_H_acc * (aCov / dt) * vel_H_acc.transpose()) +
(pos_H_biasAccInit * (bInitCov.block<3, 3>(0, 0) / dt) *
vel_H_biasAccInit.transpose());
D_v_R(&G_measCov_Gt) = vel_H_biasAccInit * (bInitCov.block<3, 3>(0, 3) / dt) *
theta_H_biasOmegaInit.transpose();
D_v_t(&G_measCov_Gt) =
(vel_H_acc * (aCov / dt) * pos_H_acc.transpose()) +
(vel_H_biasAccInit * (bInitCov.block<3, 3>(0, 0) / dt) *
pos_H_biasAccInit.transpose());

preintMeasCov_.noalias() += G_measCov_Gt;
}

//------------------------------------------------------------------------------
Expand Down
13 changes: 7 additions & 6 deletions gtsam/navigation/CombinedImuFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
* Robotics: Science and Systems (RSS), 2015.
Expand All @@ -61,19 +62,19 @@ typedef ManifoldPreintegration PreintegrationType;
struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
Matrix6 biasAccOmegaInt; ///< covariance of bias used for pre-integration
Matrix6 biasAccOmegaInit; ///< covariance of bias used as initial estimate.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

etc...


/// Default constructor makes uninitialized params struct.
/// Used for serialization.
PreintegrationCombinedParams()
: biasAccCovariance(I_3x3),
biasOmegaCovariance(I_3x3),
biasAccOmegaInt(I_6x6) {}
biasAccOmegaInit(I_6x6) {}

/// See two named constructors below for good values of n_gravity in body frame
PreintegrationCombinedParams(const Vector3& n_gravity) :
PreintegrationParams(n_gravity), biasAccCovariance(I_3x3),
biasOmegaCovariance(I_3x3), biasAccOmegaInt(I_6x6) {
biasOmegaCovariance(I_3x3), biasAccOmegaInit(I_6x6) {

}

Expand All @@ -92,11 +93,11 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {

void setBiasAccCovariance(const Matrix3& cov) { biasAccCovariance=cov; }
void setBiasOmegaCovariance(const Matrix3& cov) { biasOmegaCovariance=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInt=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInit=cov; }

const Matrix3& getBiasAccCovariance() const { return biasAccCovariance; }
const Matrix3& getBiasOmegaCovariance() const { return biasOmegaCovariance; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInt; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInit; }

private:

Expand All @@ -108,7 +109,7 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationParams);
ar & BOOST_SERIALIZATION_NVP(biasAccCovariance);
ar & BOOST_SERIALIZATION_NVP(biasOmegaCovariance);
ar & BOOST_SERIALIZATION_NVP(biasAccOmegaInt);
ar & BOOST_SERIALIZATION_NVP(biasAccOmegaInit);
}

public:
Expand Down
6 changes: 4 additions & 2 deletions gtsam/navigation/ImuFactor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(

// Update preintegrated measurements (also get Jacobian)
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);

// first order covariance propagation:
Expand All @@ -73,11 +73,13 @@ void PreintegratedImuMeasurements::integrateMeasurement(
const Matrix3& iCov = p().integrationCovariance;

// (1/dt) allows to pass from continuous time noise to discrete time noise
// Update the uncertainty on the state (matrix A in [4]).
preintMeasCov_ = A * preintMeasCov_ * A.transpose();
// These 2 updates account for uncertainty on the IMU measurement (matrix B in [4]).
preintMeasCov_.noalias() += B * (aCov / dt) * B.transpose();
preintMeasCov_.noalias() += C * (wCov / dt) * C.transpose();

// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3 (9x3 matrix)
preintMeasCov_.block<3, 3>(3, 3).noalias() += iCov * dt;
}

Expand Down
1 change: 1 addition & 0 deletions gtsam/navigation/ImuFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, "IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation",
* Robotics: Science and Systems (RSS), 2015.
Expand Down
4 changes: 2 additions & 2 deletions gtsam/navigation/PreintegrationBase.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -157,9 +157,9 @@ Vector9 PreintegrationBase::computeError(const NavState& state_i,
state_j.localCoordinates(predictedState_j, H2 ? &D_error_state_j : 0,
H1 || H3 ? &D_error_predict : 0);

if (H1) *H1 << D_error_predict* D_predict_state_i;
if (H1) *H1 << D_error_predict * D_predict_state_i;
if (H2) *H2 << D_error_state_j;
if (H3) *H3 << D_error_predict* D_predict_bias_i;
if (H3) *H3 << D_error_predict * D_predict_bias_i;

return error;
}
Expand Down
Loading