Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix initialization in range iSAM example #1131

Merged
merged 5 commits into from
Mar 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
195 changes: 114 additions & 81 deletions examples/RangeISAMExample_plaza2.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,153 +10,167 @@
* -------------------------------------------------------------------------- */

/**
* @file RangeISAMExample_plaza1.cpp
* @file RangeISAMExample_plaza2.cpp
* @brief A 2D Range SLAM example
* @date June 20, 2013
* @author FRank Dellaert
* @author Frank Dellaert
*/

// Both relative poses and recovered trajectory poses will be stored as Pose2 objects
// Both relative poses and recovered trajectory poses will be stored as Pose2.
#include <gtsam/geometry/Pose2.h>
using gtsam::Pose2;

// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
// gtsam::Vectors are dynamic Eigen vectors, Vector3 is statically sized.
#include <gtsam/base/Vector.h>
using gtsam::Vector;
using gtsam::Vector3;

// Unknown landmarks are of type Point2 (which is just a 2D Eigen vector).
#include <gtsam/geometry/Point2.h>
using gtsam::Point2;

// Each variable in the system (poses and landmarks) must be identified with a
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
// (X1, X2, L1). Here we will use Symbols.
#include <gtsam/inference/Symbol.h>
using gtsam::Symbol;

// We want to use iSAM2 to solve the range-SLAM problem incrementally
// We want to use iSAM2 to solve the range-SLAM problem incrementally.
#include <gtsam/nonlinear/ISAM2.h>

// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
// iSAM2 requires as input a set set of new factors to be added stored in a
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The wording of this comment confuses me, should it be "iSAM2 requires as input a set of new factors to be added and stored in a factor graph" ?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's a bit confusing but I'm not gonna restart the CI for this :-) CO2 emissions and all that. I'll slip it into the other PR that I'm working on.

// factor graph, and initial guesses for any new variables in the added factors.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>

// We will use a non-liear solver to batch-inituialize from the first 150 frames
// We will use a non-linear solver to batch-initialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>

// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include <gtsam/slam/BetweenFactor.h>
// Measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems:
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>

// Standard headers, added last, so we know headers above work on their own
// Timing, with functions below, provides nice facilities to benchmark.
#include <gtsam/base/timing.h>
using gtsam::tictoc_print_;

// Standard headers, added last, so we know headers above work on their own.
#include <fstream>
#include <iostream>
#include <random>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace std;
using namespace gtsam;
namespace NM = gtsam::noiseModel;

// data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
// Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
// Data is second UWB ranging dataset, B2 or "plaza 2", from
// "Navigating with Ranging Radios: Five Data Sets with Ground Truth"
// by Joseph Djugash, Bradley Hamner, and Stephan Roth
// https://www.ri.cmu.edu/pub_files/2009/9/Final_5datasetsRangingRadios.pdf

// load the odometry
// DR: Odometry Input (delta distance traveled and delta heading change)
// Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
typedef pair<double, Pose2> TimedOdometry;
list<TimedOdometry> readOdometry() {
list<TimedOdometry> odometryList;
string data_file = findExampleDataFile("Plaza2_DR.txt");
ifstream is(data_file.c_str());
// Time (sec) Delta Distance Traveled (m) Delta Heading (rad)
using TimedOdometry = std::pair<double, Pose2>;
std::list<TimedOdometry> readOdometry() {
std::list<TimedOdometry> odometryList;
std::string data_file = gtsam::findExampleDataFile("Plaza2_DR.txt");
std::ifstream is(data_file.c_str());

while (is) {
double t, distance_traveled, delta_heading;
is >> t >> distance_traveled >> delta_heading;
odometryList.push_back(
TimedOdometry(t, Pose2(distance_traveled, 0, delta_heading)));
odometryList.emplace_back(t, Pose2(distance_traveled, 0, delta_heading));
}
is.clear(); /* clears the end-of-file and error flags */
return odometryList;
}

// load the ranges from TD
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
typedef boost::tuple<double, size_t, double> RangeTriple;
vector<RangeTriple> readTriples() {
vector<RangeTriple> triples;
string data_file = findExampleDataFile("Plaza2_TD.txt");
ifstream is(data_file.c_str());
using RangeTriple = boost::tuple<double, size_t, double>;
std::vector<RangeTriple> readTriples() {
std::vector<RangeTriple> triples;
std::string data_file = gtsam::findExampleDataFile("Plaza2_TD.txt");
std::ifstream is(data_file.c_str());

while (is) {
double t, sender, range;
size_t receiver;
double t, range, sender, receiver;
is >> t >> sender >> receiver >> range;
triples.push_back(RangeTriple(t, receiver, range));
triples.emplace_back(t, receiver, range);
}
is.clear(); /* clears the end-of-file and error flags */
return triples;
}

// main
int main (int argc, char** argv) {

int main(int argc, char** argv) {
// load Plaza2 data
list<TimedOdometry> odometry = readOdometry();
// size_t M = odometry.size();
std::list<TimedOdometry> odometry = readOdometry();
size_t M = odometry.size();
std::cout << "Read " << M << " odometry entries." << std::endl;

vector<RangeTriple> triples = readTriples();
std::vector<RangeTriple> triples = readTriples();
size_t K = triples.size();
std::cout << "Read " << K << " range triples." << std::endl;

// parameters
size_t minK = 150; // minimum number of range measurements to process initially
size_t incK = 25; // minimum number of range measurements to process after
bool groundTruth = false;
size_t minK =
150; // minimum number of range measurements to process initially
size_t incK = 25; // minimum number of range measurements to process after
bool robust = true;

// Set Noise parameters
Vector priorSigmas = Vector3(1,1,M_PI);
Vector priorSigmas = Vector3(1, 1, M_PI);
Vector odoSigmas = Vector3(0.05, 0.01, 0.1);
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
rangeNoise = robust ? tukey : gaussian;
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), // prior
looseNoise = NM::Isotropic::Sigma(2, 1000), // loose LM prior
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15),
gaussian), // robust
rangeNoise = robust ? tukey : gaussian;

// Initialize iSAM
ISAM2 isam;
gtsam::ISAM2 isam;

// Add prior on first pose
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
M_PI - 2.02108900000000);
NonlinearFactorGraph newFactors;
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.021089);
gtsam::NonlinearFactorGraph newFactors;
newFactors.addPrior(0, pose0, priorNoise);
Values initial;
gtsam::Values initial;
initial.insert(0, pose0);

// initialize points
if (groundTruth) { // from TL file
initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
} else { // drawn from sigma=1 Gaussian in matlab version
initial.insert(symbol('L', 1), Point2(3.5784, 2.76944));
initial.insert(symbol('L', 6), Point2(-1.34989, 3.03492));
initial.insert(symbol('L', 0), Point2(0.725404, -0.0630549));
initial.insert(symbol('L', 5), Point2(0.714743, -0.204966));
}
// We will initialize landmarks randomly, and keep track of which landmarks we
// already added with a set.
std::mt19937_64 rng;
std::normal_distribution<double> normal(0.0, 100.0);
std::set<Symbol> initializedLandmarks;

// set some loop variables
size_t i = 1; // step counter
size_t k = 0; // range measurement counter
size_t i = 1; // step counter
size_t k = 0; // range measurement counter
bool initialized = false;
Pose2 lastPose = pose0;
size_t countK = 0;

// Loop over odometry
gttic_(iSAM);
for(const TimedOdometry& timedOdometry: odometry) {
//--------------------------------- odometry loop -----------------------------------------
for (const TimedOdometry& timedOdometry : odometry) {
//--------------------------------- odometry loop --------------------------
double t;
Pose2 odometry;
boost::tie(t, odometry) = timedOdometry;

// add odometry factor
newFactors.push_back(BetweenFactor<Pose2>(i-1, i, odometry, odoNoise));
newFactors.emplace_shared<gtsam::BetweenFactor<Pose2>>(i - 1, i, odometry,
odoNoise);

// predict pose and add as initial estimate
Pose2 predictedPose = lastPose.compose(odometry);
Expand All @@ -166,17 +180,30 @@ int main (int argc, char** argv) {
// Check if there are range factors to be added
while (k < K && t >= boost::get<0>(triples[k])) {
size_t j = boost::get<1>(triples[k]);
Symbol landmark_key('L', j);
double range = boost::get<2>(triples[k]);
newFactors.push_back(RangeFactor<Pose2, Point2>(i, symbol('L', j), range,rangeNoise));
newFactors.emplace_shared<gtsam::RangeFactor<Pose2, Point2>>(
i, landmark_key, range, rangeNoise);
if (initializedLandmarks.count(landmark_key) == 0) {
std::cout << "adding landmark " << j << std::endl;
double x = normal(rng), y = normal(rng);
initial.insert(landmark_key, Point2(x, y));
initializedLandmarks.insert(landmark_key);
// We also add a very loose prior on the landmark in case there is only
// one sighting, which cannot fully determine the landmark.
newFactors.emplace_shared<gtsam::PriorFactor<Point2>>(
landmark_key, Point2(0, 0), looseNoise);
}
k = k + 1;
countK = countK + 1;
}

// Check whether to update iSAM 2
if ((k > minK) && (countK > incK)) {
if (!initialized) { // Do a full optimize for first minK ranges
if (!initialized) { // Do a full optimize for first minK ranges
std::cout << "Initializing at time " << k << std::endl;
gttic_(batchInitialization);
LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
gtsam::LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
initial = batchOptimizer.optimize();
gttoc_(batchInitialization);
initialized = true;
Expand All @@ -185,21 +212,27 @@ int main (int argc, char** argv) {
isam.update(newFactors, initial);
gttoc_(update);
gttic_(calculateEstimate);
Values result = isam.calculateEstimate();
gtsam::Values result = isam.calculateEstimate();
gttoc_(calculateEstimate);
lastPose = result.at<Pose2>(i);
newFactors = NonlinearFactorGraph();
initial = Values();
newFactors = gtsam::NonlinearFactorGraph();
initial = gtsam::Values();
countK = 0;
}
i += 1;
//--------------------------------- odometry loop -----------------------------------------
} // end for
//--------------------------------- odometry loop --------------------------
} // end for
gttoc_(iSAM);

// Print timings
tictoc_print_();

// Print optimized landmarks:
gtsam::Values finalResult = isam.calculateEstimate();
for (auto&& landmark_key : initializedLandmarks) {
Point2 p = finalResult.at<Point2>(landmark_key);
std::cout << landmark_key << ":" << p.transpose() << "\n";
}

exit(0);
}

Loading