forked from bozhu/AES-Python
-
Notifications
You must be signed in to change notification settings - Fork 93
/
aes.py
executable file
·548 lines (436 loc) · 19.5 KB
/
aes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
#!/usr/bin/env python3
"""
This is an exercise in secure symmetric-key encryption, implemented in pure
Python (no external libraries needed).
Original AES-128 implementation by Bo Zhu (http://about.bozhu.me) at
https://github.com/bozhu/AES-Python . PKCS#7 padding, CBC mode, PKBDF2, HMAC,
byte array and string support added by me at https://github.com/boppreh/aes.
Other block modes contributed by @righthandabacus.
Although this is an exercise, the `encrypt` and `decrypt` functions should
provide reasonable security to encrypted messages.
"""
s_box = (
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16,
)
inv_s_box = (
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D,
)
def sub_bytes(s):
for i in range(4):
for j in range(4):
s[i][j] = s_box[s[i][j]]
def inv_sub_bytes(s):
for i in range(4):
for j in range(4):
s[i][j] = inv_s_box[s[i][j]]
def shift_rows(s):
s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1]
s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3]
def inv_shift_rows(s):
s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1]
s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3]
def add_round_key(s, k):
for i in range(4):
for j in range(4):
s[i][j] ^= k[i][j]
# learned from https://web.archive.org/web/20100626212235/http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c
xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)
def mix_single_column(a):
# see Sec 4.1.2 in The Design of Rijndael
t = a[0] ^ a[1] ^ a[2] ^ a[3]
u = a[0]
a[0] ^= t ^ xtime(a[0] ^ a[1])
a[1] ^= t ^ xtime(a[1] ^ a[2])
a[2] ^= t ^ xtime(a[2] ^ a[3])
a[3] ^= t ^ xtime(a[3] ^ u)
def mix_columns(s):
for i in range(4):
mix_single_column(s[i])
def inv_mix_columns(s):
# see Sec 4.1.3 in The Design of Rijndael
for i in range(4):
u = xtime(xtime(s[i][0] ^ s[i][2]))
v = xtime(xtime(s[i][1] ^ s[i][3]))
s[i][0] ^= u
s[i][1] ^= v
s[i][2] ^= u
s[i][3] ^= v
mix_columns(s)
r_con = (
0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A,
0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39,
)
def bytes2matrix(text):
""" Converts a 16-byte array into a 4x4 matrix. """
return [list(text[i:i+4]) for i in range(0, len(text), 4)]
def matrix2bytes(matrix):
""" Converts a 4x4 matrix into a 16-byte array. """
return bytes(sum(matrix, []))
def xor_bytes(a, b):
""" Returns a new byte array with the elements xor'ed. """
return bytes(i^j for i, j in zip(a, b))
def inc_bytes(a):
""" Returns a new byte array with the value increment by 1 """
out = list(a)
for i in reversed(range(len(out))):
if out[i] == 0xFF:
out[i] = 0
else:
out[i] += 1
break
return bytes(out)
def pad(plaintext):
"""
Pads the given plaintext with PKCS#7 padding to a multiple of 16 bytes.
Note that if the plaintext size is a multiple of 16,
a whole block will be added.
"""
padding_len = 16 - (len(plaintext) % 16)
padding = bytes([padding_len] * padding_len)
return plaintext + padding
def unpad(plaintext):
"""
Removes a PKCS#7 padding, returning the unpadded text and ensuring the
padding was correct.
"""
padding_len = plaintext[-1]
assert padding_len > 0
message, padding = plaintext[:-padding_len], plaintext[-padding_len:]
assert all(p == padding_len for p in padding)
return message
def split_blocks(message, block_size=16, require_padding=True):
assert len(message) % block_size == 0 or not require_padding
return [message[i:i+16] for i in range(0, len(message), block_size)]
class AES:
"""
Class for AES-128 encryption with CBC mode and PKCS#7.
This is a raw implementation of AES, without key stretching or IV
management. Unless you need that, please use `encrypt` and `decrypt`.
"""
rounds_by_key_size = {16: 10, 24: 12, 32: 14}
def __init__(self, master_key):
"""
Initializes the object with a given key.
"""
assert len(master_key) in AES.rounds_by_key_size
self.n_rounds = AES.rounds_by_key_size[len(master_key)]
self._key_matrices = self._expand_key(master_key)
def _expand_key(self, master_key):
"""
Expands and returns a list of key matrices for the given master_key.
"""
# Initialize round keys with raw key material.
key_columns = bytes2matrix(master_key)
iteration_size = len(master_key) // 4
i = 1
while len(key_columns) < (self.n_rounds + 1) * 4:
# Copy previous word.
word = list(key_columns[-1])
# Perform schedule_core once every "row".
if len(key_columns) % iteration_size == 0:
# Circular shift.
word.append(word.pop(0))
# Map to S-BOX.
word = [s_box[b] for b in word]
# XOR with first byte of R-CON, since the others bytes of R-CON are 0.
word[0] ^= r_con[i]
i += 1
elif len(master_key) == 32 and len(key_columns) % iteration_size == 4:
# Run word through S-box in the fourth iteration when using a
# 256-bit key.
word = [s_box[b] for b in word]
# XOR with equivalent word from previous iteration.
word = xor_bytes(word, key_columns[-iteration_size])
key_columns.append(word)
# Group key words in 4x4 byte matrices.
return [key_columns[4*i : 4*(i+1)] for i in range(len(key_columns) // 4)]
def encrypt_block(self, plaintext):
"""
Encrypts a single block of 16 byte long plaintext.
"""
assert len(plaintext) == 16
plain_state = bytes2matrix(plaintext)
add_round_key(plain_state, self._key_matrices[0])
for i in range(1, self.n_rounds):
sub_bytes(plain_state)
shift_rows(plain_state)
mix_columns(plain_state)
add_round_key(plain_state, self._key_matrices[i])
sub_bytes(plain_state)
shift_rows(plain_state)
add_round_key(plain_state, self._key_matrices[-1])
return matrix2bytes(plain_state)
def decrypt_block(self, ciphertext):
"""
Decrypts a single block of 16 byte long ciphertext.
"""
assert len(ciphertext) == 16
cipher_state = bytes2matrix(ciphertext)
add_round_key(cipher_state, self._key_matrices[-1])
inv_shift_rows(cipher_state)
inv_sub_bytes(cipher_state)
for i in range(self.n_rounds - 1, 0, -1):
add_round_key(cipher_state, self._key_matrices[i])
inv_mix_columns(cipher_state)
inv_shift_rows(cipher_state)
inv_sub_bytes(cipher_state)
add_round_key(cipher_state, self._key_matrices[0])
return matrix2bytes(cipher_state)
def encrypt_cbc(self, plaintext, iv):
"""
Encrypts `plaintext` using CBC mode and PKCS#7 padding, with the given
initialization vector (iv).
"""
assert len(iv) == 16
plaintext = pad(plaintext)
blocks = []
previous = iv
for plaintext_block in split_blocks(plaintext):
# CBC mode encrypt: encrypt(plaintext_block XOR previous)
block = self.encrypt_block(xor_bytes(plaintext_block, previous))
blocks.append(block)
previous = block
return b''.join(blocks)
def decrypt_cbc(self, ciphertext, iv):
"""
Decrypts `ciphertext` using CBC mode and PKCS#7 padding, with the given
initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
previous = iv
for ciphertext_block in split_blocks(ciphertext):
# CBC mode decrypt: previous XOR decrypt(ciphertext)
blocks.append(xor_bytes(previous, self.decrypt_block(ciphertext_block)))
previous = ciphertext_block
return unpad(b''.join(blocks))
def encrypt_pcbc(self, plaintext, iv):
"""
Encrypts `plaintext` using PCBC mode and PKCS#7 padding, with the given
initialization vector (iv).
"""
assert len(iv) == 16
plaintext = pad(plaintext)
blocks = []
prev_ciphertext = iv
prev_plaintext = bytes(16)
for plaintext_block in split_blocks(plaintext):
# PCBC mode encrypt: encrypt(plaintext_block XOR (prev_ciphertext XOR prev_plaintext))
ciphertext_block = self.encrypt_block(xor_bytes(plaintext_block, xor_bytes(prev_ciphertext, prev_plaintext)))
blocks.append(ciphertext_block)
prev_ciphertext = ciphertext_block
prev_plaintext = plaintext_block
return b''.join(blocks)
def decrypt_pcbc(self, ciphertext, iv):
"""
Decrypts `ciphertext` using PCBC mode and PKCS#7 padding, with the given
initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
prev_ciphertext = iv
prev_plaintext = bytes(16)
for ciphertext_block in split_blocks(ciphertext):
# PCBC mode decrypt: (prev_plaintext XOR prev_ciphertext) XOR decrypt(ciphertext_block)
plaintext_block = xor_bytes(xor_bytes(prev_ciphertext, prev_plaintext), self.decrypt_block(ciphertext_block))
blocks.append(plaintext_block)
prev_ciphertext = ciphertext_block
prev_plaintext = plaintext_block
return unpad(b''.join(blocks))
def encrypt_cfb(self, plaintext, iv):
"""
Encrypts `plaintext` with the given initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
prev_ciphertext = iv
for plaintext_block in split_blocks(plaintext, require_padding=False):
# CFB mode encrypt: plaintext_block XOR encrypt(prev_ciphertext)
ciphertext_block = xor_bytes(plaintext_block, self.encrypt_block(prev_ciphertext))
blocks.append(ciphertext_block)
prev_ciphertext = ciphertext_block
return b''.join(blocks)
def decrypt_cfb(self, ciphertext, iv):
"""
Decrypts `ciphertext` with the given initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
prev_ciphertext = iv
for ciphertext_block in split_blocks(ciphertext, require_padding=False):
# CFB mode decrypt: ciphertext XOR decrypt(prev_ciphertext)
plaintext_block = xor_bytes(ciphertext_block, self.encrypt_block(prev_ciphertext))
blocks.append(plaintext_block)
prev_ciphertext = ciphertext_block
return b''.join(blocks)
def encrypt_ofb(self, plaintext, iv):
"""
Encrypts `plaintext` using OFB mode initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
previous = iv
for plaintext_block in split_blocks(plaintext, require_padding=False):
# OFB mode encrypt: plaintext_block XOR encrypt(previous)
block = self.encrypt_block(previous)
ciphertext_block = xor_bytes(plaintext_block, block)
blocks.append(ciphertext_block)
previous = block
return b''.join(blocks)
def decrypt_ofb(self, ciphertext, iv):
"""
Decrypts `ciphertext` using OFB mode initialization vector (iv).
"""
assert len(iv) == 16
blocks = []
previous = iv
for ciphertext_block in split_blocks(ciphertext, require_padding=False):
# OFB mode decrypt: ciphertext XOR encrypt(previous)
block = self.encrypt_block(previous)
plaintext_block = xor_bytes(ciphertext_block, block)
blocks.append(plaintext_block)
previous = block
return b''.join(blocks)
def encrypt_ctr(self, plaintext, iv):
"""
Encrypts `plaintext` using CTR mode with the given nounce/IV.
"""
assert len(iv) == 16
blocks = []
nonce = iv
for plaintext_block in split_blocks(plaintext, require_padding=False):
# CTR mode encrypt: plaintext_block XOR encrypt(nonce)
block = xor_bytes(plaintext_block, self.encrypt_block(nonce))
blocks.append(block)
nonce = inc_bytes(nonce)
return b''.join(blocks)
def decrypt_ctr(self, ciphertext, iv):
"""
Decrypts `ciphertext` using CTR mode with the given nounce/IV.
"""
assert len(iv) == 16
blocks = []
nonce = iv
for ciphertext_block in split_blocks(ciphertext, require_padding=False):
# CTR mode decrypt: ciphertext XOR encrypt(nonce)
block = xor_bytes(ciphertext_block, self.encrypt_block(nonce))
blocks.append(block)
nonce = inc_bytes(nonce)
return b''.join(blocks)
import os
from hashlib import pbkdf2_hmac
from hmac import new as new_hmac, compare_digest
AES_KEY_SIZE = 16
HMAC_KEY_SIZE = 16
IV_SIZE = 16
SALT_SIZE = 16
HMAC_SIZE = 32
def get_key_iv(password, salt, workload=100000):
"""
Stretches the password and extracts an AES key, an HMAC key and an AES
initialization vector.
"""
stretched = pbkdf2_hmac('sha256', password, salt, workload, AES_KEY_SIZE + IV_SIZE + HMAC_KEY_SIZE)
aes_key, stretched = stretched[:AES_KEY_SIZE], stretched[AES_KEY_SIZE:]
hmac_key, stretched = stretched[:HMAC_KEY_SIZE], stretched[HMAC_KEY_SIZE:]
iv = stretched[:IV_SIZE]
return aes_key, hmac_key, iv
def encrypt(key, plaintext, workload=100000):
"""
Encrypts `plaintext` with `key` using AES-128, an HMAC to verify integrity,
and PBKDF2 to stretch the given key.
The exact algorithm is specified in the module docstring.
"""
if isinstance(key, str):
key = key.encode('utf-8')
if isinstance(plaintext, str):
plaintext = plaintext.encode('utf-8')
salt = os.urandom(SALT_SIZE)
key, hmac_key, iv = get_key_iv(key, salt, workload)
ciphertext = AES(key).encrypt_cbc(plaintext, iv)
hmac = new_hmac(hmac_key, salt + ciphertext, 'sha256').digest()
assert len(hmac) == HMAC_SIZE
return hmac + salt + ciphertext
def decrypt(key, ciphertext, workload=100000):
"""
Decrypts `ciphertext` with `key` using AES-128, an HMAC to verify integrity,
and PBKDF2 to stretch the given key.
The exact algorithm is specified in the module docstring.
"""
assert len(ciphertext) % 16 == 0, "Ciphertext must be made of full 16-byte blocks."
assert len(ciphertext) >= 32, """
Ciphertext must be at least 32 bytes long (16 byte salt + 16 byte block). To
encrypt or decrypt single blocks use `AES(key).decrypt_block(ciphertext)`.
"""
if isinstance(key, str):
key = key.encode('utf-8')
hmac, ciphertext = ciphertext[:HMAC_SIZE], ciphertext[HMAC_SIZE:]
salt, ciphertext = ciphertext[:SALT_SIZE], ciphertext[SALT_SIZE:]
key, hmac_key, iv = get_key_iv(key, salt, workload)
expected_hmac = new_hmac(hmac_key, salt + ciphertext, 'sha256').digest()
assert compare_digest(hmac, expected_hmac), 'Ciphertext corrupted or tampered.'
return AES(key).decrypt_cbc(ciphertext, iv)
def benchmark():
key = b'P' * 16
message = b'M' * 16
aes = AES(key)
for i in range(30000):
aes.encrypt_block(message)
__all__ = ["encrypt", "decrypt", "AES"]
if __name__ == '__main__':
import sys
write = lambda b: sys.stdout.buffer.write(b)
read = lambda: sys.stdin.buffer.read()
if len(sys.argv) < 2:
print('Usage: ./aes.py encrypt "key" "message"')
print('Running tests...')
from tests import *
run()
elif len(sys.argv) == 2 and sys.argv[1] == 'benchmark':
benchmark()
exit()
elif len(sys.argv) == 3:
text = read()
elif len(sys.argv) > 3:
text = ' '.join(sys.argv[2:])
if 'encrypt'.startswith(sys.argv[1]):
write(encrypt(sys.argv[2], text))
elif 'decrypt'.startswith(sys.argv[1]):
write(decrypt(sys.argv[2], text))
else:
print('Expected command "encrypt" or "decrypt" in first argument.')
# encrypt('my secret key', b'0' * 1000000) # 1 MB encrypted in 20 seconds.