-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patheval_utils.py
636 lines (567 loc) · 25.3 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
"""
"""
# Built-in
import os
import re
# Libs
import scipy.special
import skimage.transform
import numpy as np
import toolman as tm
from tqdm import tqdm
from skimage import measure
from scipy.spatial import KDTree
import pydensecrf.densecrf as dcrf
from pydensecrf.utils import unary_from_softmax
from sklearn.metrics import precision_recall_curve, average_precision_score
# PyTorch
import torch
import torch.nn.functional as F
# Own modules
from data import patch_extractor, data_utils
from mrs_utils import vis_utils, metric_utils, misc_utils
def display_group(reg_groups, size, img=None, need_return=False):
"""
Visualize grouped connected components
:param reg_groups: grouped connected components, can get this by calling ObjectScorer._group_pairs
:param size: the size of the image or gt
:param img: if given, the image will be displayed together with the visualization
:param need_return: if True, the rendered image will be returned, otherwise the image will be displayed
:return:
"""
group_map = np.zeros(size, dtype=np.int)
for cnt, group in enumerate(reg_groups):
for g in group:
coords = np.array(g.coords)
group_map[coords[:, 0], coords[:, 1]] = cnt + 1
if need_return:
return group_map
else:
if img:
vis_utils.compare_figures([img, group_map], (1, 2), fig_size=(12, 5))
else:
vis_utils.compare_figures([group_map], (1, 1), fig_size=(8, 6))
def get_stats_from_group(reg_group, conf_img=None):
"""
Get the coordinates of all pixels within the group and also mean of confidence
:param reg_group:
:param conf_img:
:return:
"""
coords = []
for g in reg_group:
coords.extend(g.coords)
coords = np.array(coords)
if conf_img is not None:
conf = np.mean(conf_img[coords[:, 0], coords[:, 1]])
return coords, conf
else:
return coords
def coord_iou(coords_a, coords_b):
"""
This code comes from https://stackoverflow.com/a/42874377
:param coords_a:
:param coords_b:
:return:
"""
y1, x1 = np.min(coords_a, axis=0)
y2, x2 = np.max(coords_a, axis=0)
bb1 = {'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2}
y1, x1 = np.min(coords_b, axis=0)
y2, x2 = np.max(coords_b, axis=0)
bb2 = {'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2}
assert bb1['x1'] <= bb1['x2']
assert bb1['y1'] <= bb1['y2']
assert bb2['x1'] <= bb2['x2']
assert bb2['y1'] <= bb2['y2']
x_left = max(bb1['x1'], bb2['x1'])
y_top = max(bb1['y1'], bb2['y1'])
x_right = min(bb1['x2'], bb2['x2'])
y_bottom = min(bb1['y2'], bb2['y2'])
if x_right < x_left or y_bottom < y_top:
return 0.0
intersection_area = (x_right - x_left) * (y_bottom - y_top)
bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
iou = np.minimum(np.maximum(iou, 0), 1)
return iou
def compute_iou(coords_a, coords_b, size):
"""
Compute object-wise IoU
:param self:
:param coords_a:
:param coords_b:
:param size:
:return:
"""
# compute bbox IoU since this is faster
iou = coord_iou(coords_a, coords_b)
if iou > 0:
# if bboxes overlaps, compute object-wise IoU
tile_a = np.zeros(size)
tile_a[coords_a[:, 0], coords_a[:, 1]] = 1
tile_b = np.zeros(size)
tile_b[coords_b[:, 0], coords_b[:, 1]] = 1
return metric_utils.iou_metric(tile_a, tile_b, divide=True)
else:
return 0
class ObjectScorer(object):
def __init__(self, min_region=5, min_th=0.5, link_r=20, eps=2):
"""
Object-wise scoring metric: the conf map instead of prediction map is needed
The conf map will first be binarized by certain threshold, then any connected components
smaller than certain region will be discarded
Any connected components within certain range are further grouped
For getting precision and recall, first compute grouped object-wise IoU. An object in pred
will be "linked" to a gt when IoU is greater than a threshold. We then define:
TP: A prediction is linked to gt
FP: A prediction has no gt to be linked
FN: A gt has no prediction to be linked
:param min_region: the smallest #pixels to form an object
:param min_th: the threshold to binarize the conf map
:param link_r: the #pixels between two connected components to be grouped
:param eps: the epsilon in KDTree searching
"""
self.min_region = min_region
self.min_th = min_th
self.link_r = link_r
self.eps = eps
@staticmethod
def _reg_to_centroids(reg_props):
"""
Get the centroids of given region proposals
:param reg_props: the region proposal generated by skimage.measure
:return:
"""
return [[int(c) for c in rp.centroid] for rp in reg_props]
@staticmethod
def _group_pairs(cps, reg_props):
"""
Group connected components together
:param cps:
:param reg_props:
:return:
"""
groups = []
obj_ids = list(range(len(reg_props)))
for cp in cps:
flag = True
for group in groups:
if cp[0] in group or cp[1] in group:
group.update(cp)
flag = False
break
if flag:
groups.append(set(cp))
for c in cp:
obj_ids.remove(c)
for obj_id in obj_ids:
groups.append({obj_id})
reg_groups = []
for group in groups:
reg_groups.append([reg_props[g] for g in group])
return reg_groups
def get_object_groups(self, conf_map):
"""
Group objects within certain radius
:param conf_map:
:return:
"""
# get connected components
im_binary = conf_map >= self.min_th
im_label = measure.label(im_binary)
reg_props = measure.regionprops(im_label, conf_map)
# remove regions that are smaller than threshold
reg_props = [a for a in reg_props if a.area >= self.min_region]
# group objects
centroids = self._reg_to_centroids(reg_props)
if len(centroids) > 0:
kdt = KDTree(centroids)
connect_pair = kdt.query_pairs(self.link_r, eps=self.eps)
groups = self._group_pairs(connect_pair, reg_props)
return groups
else:
return []
def score(pred, lbl, min_region=5, min_th=0.5, link_r=20, eps=2, iou_th=0.5):
obj_scorer = ObjectScorer(min_region, min_th, link_r, eps)
group_pred = obj_scorer.get_object_groups(pred)
group_lbl =obj_scorer. get_object_groups(lbl)
conf_list, true_list = [], []
linked_pred = []
for g_cnt, g_lbl in enumerate(group_lbl):
link_flag = False
for cnt, g_pred in enumerate(group_pred):
coords_pred, conf = get_stats_from_group(g_pred, pred)
coords_lbl = get_stats_from_group(g_lbl)
iou = compute_iou(coords_pred, coords_lbl, pred.shape)
if iou >= iou_th and cnt not in linked_pred:
# TP
conf_list.append(conf)
true_list.append(1)
linked_pred.append(cnt)
link_flag = True
break
if not link_flag:
# FN
conf_list.append(-1)
true_list.append(1)
for cnt, g_pred in enumerate(group_pred):
if cnt not in linked_pred:
# FP
_, conf = get_stats_from_group(g_pred, pred)
conf_list.append(conf)
true_list.append(0)
return conf_list, true_list
def batch_score(pred_files, lbl_files, min_region=5, min_th=0.5, link_r=20, eps=2, iou_th=0.5):
conf, true = [], []
for pred_file, lbl_file in tqdm(zip(pred_files, lbl_files), total=len(pred_files)):
pred, lbl = misc_utils.load_file(pred_file), misc_utils.load_file(lbl_file)
conf_, true_ = score(pred, lbl, min_region, min_th, link_r, eps, iou_th)
conf.extend(conf_)
true.extend(true_)
return conf, true
def read_results(result_name, regex=None, sum_results=False, delta=1e-6, class_names=None):
"""
Read and parse evaluated results text file
:param result_name: path to the results file
:param regex: if given, it will be applied to select lines that match the name
:param sum_results: if True, return the IoU of the overall dataset
:param delta: a small value to prevent divided by zero
:param class_names: list of strings for class names, if None, they will be class_i
:return:
"""
def update_results(res, n, i_res, c_names):
if c_names is not None:
assert len(i_res) == 2 * len(c_names)
else:
c_names = ['class_{}'.format(i) for i in range(len(i_res) // 2)]
for cnt, c_name in enumerate(c_names):
res[n][c_name+'_a'] = i_res[cnt * 2]
res[n][c_name+'_b'] = i_res[cnt * 2 + 1]
return c_names
def combine_results(res, i_res):
if res is None:
res = dict()
for k, v in i_res.items():
if k != 'iou':
res.update({k: v})
else:
for k, v in i_res.items():
if k != 'iou':
if k in res:
res[k] += v
else:
res.update({k: v})
return res
def summarize_results(res):
sum_res = dict()
for c_name in class_names+['iou']:
res[c_name] = (float(res[c_name + '_a']) / float(res[c_name + '_b']) + delta) * 100
if 'iou' in res:
sum_res['iou'] = res['iou']
else:
overall_iou = []
for c_name in class_names:
overall_iou.append(sum_res[c_name])
sum_res['iou'] = np.mean(overall_iou)
return sum_res
results = {}
result_lines = misc_utils.load_file(result_name)
for line in result_lines:
if len(line) <= 1:
continue
name, iou_a, iou_b, *ious, iou = line.strip().split(',')
iou_a, iou_b, iou = float(iou_a), float(iou_b), float(iou)
results[name] = {'iou': iou, 'iou_a': iou_a, 'iou_b': iou_b}
class_names = update_results(results, name, ious, class_names)
if regex:
comb_res = None
for key, val in results.items():
if re.search(regex, key):
comb_res = combine_results(comb_res, val)
return summarize_results(comb_res)
elif sum_results:
return summarize_results(results['Overall'])
else:
return results
def get_precision_recall(conf, true):
ap = average_precision_score(true, conf)
p, r, th = precision_recall_curve(true, conf)
return ap, p, r, th
class Evaluator:
def __init__(self, ds_name, data_dir, tsfm, device, load_func=None, infer=False, ensembler=None, **kwargs):
ds_name = misc_utils.stem_string(ds_name)
self.tsfm = tsfm
self.device = device
if ensembler is None:
self.ensembler = BaseEnsemble()
else:
self.ensembler = ensembler
if ds_name == 'inria':
from data.inria import preprocess
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 255
self.decode_func = None
self.encode_func = None
self.class_names = ['building', ]
elif ds_name == 'deepglobe':
from data.deepglobe import preprocess
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 1
self.decode_func = None
self.encode_func = lambda x: x * 255
self.class_names = ['building', ]
elif ds_name == 'deepgloberoad':
from data.deepgloberoad import preprocess
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 255
self.decode_func = preprocess.decode_map
self.encode_func = None
self.class_names = ['road', ]
elif ds_name == 'deepglobeland':
from data.deepglobeland import preprocess
if not infer:
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir, **kwargs)
else:
self.rgb_files, self.lbl_files = preprocess.get_test_images(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 1
self.decode_func = preprocess.decode_map
self.encode_func = preprocess.encode_map
self.class_names = preprocess.CLASS_NAMES[:6]
elif ds_name == 'mnih':
from data.mnih import preprocess
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 255
self.decode_func = None
self.encode_func = None
self.class_names = ['road', ]
elif ds_name == 'spca':
from data.spca import preprocess
self.rgb_files, self.lbl_files = preprocess.get_images(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
self.truth_val = 1
self.decode_func = None
self.encode_func = None
self.class_names = ['panel', ]
elif load_func:
self.truth_val = kwargs.pop('truth_val', 1)
self.decode_func = kwargs.pop('decode_func', None)
self.encode_func = kwargs.pop('encode_func', None)
self.class_names = kwargs.pop('class_names', ['building', ])
self.rgb_files, self.lbl_files = load_func(data_dir, **kwargs)
assert len(self.rgb_files) == len(self.lbl_files)
else:
raise NotImplementedError('Dataset {} is not supported')
def get_result_strings(self, file_name, iou_score, delta=1e-6):
print_string = '{}: IoU={:05.2f}\n\t'.format(file_name, np.mean(iou_score[0, :] / (iou_score[1, :] + delta) * 100))
for c_cnt, class_name in enumerate(self.class_names):
print_string += ' {}: IoU={:05.2f}'.format(class_name, iou_score[0, c_cnt] / (iou_score[1, c_cnt] + delta) * 100)
report_string = '{},{},{}'.format(file_name, np.sum(iou_score[0, :]), np.sum(iou_score[1, :]))
if len(self.class_names) > 1:
for c_cnt, class_name in enumerate(self.class_names):
report_string += ',{},{}'.format(iou_score[0, c_cnt], iou_score[1, c_cnt])
report_string += ',{}\n'.format(np.mean(iou_score[0, :] / (iou_score[1, :] + delta) * 100))
return print_string, report_string
def evaluate(self, model, patch_size, overlap, pred_dir=None, report_dir=None, save_conf=False, delta=1e-6,
eval_class=(1, ), visualize=False, densecrf=False, crf_params=None, verbose=True):
if isinstance(model, list) or isinstance(model, tuple):
lbl_margin = model[0].lbl_margin
else:
lbl_margin = model.lbl_margin
if crf_params is None and densecrf:
crf_params = {'sxy': 3, 'srgb': 3, 'compat': 5}
iou_a, iou_b = np.zeros(len(eval_class)), np.zeros(len(eval_class))
report = []
if pred_dir:
misc_utils.make_dir_if_not_exist(pred_dir)
for rgb_file, lbl_file in zip(self.rgb_files, self.lbl_files):
file_name = os.path.splitext(os.path.basename(lbl_file))[0]
# read data
rgb = misc_utils.load_file(rgb_file)[:, :, :3]
lbl = misc_utils.load_file(lbl_file)
if self.decode_func:
lbl = self.decode_func(lbl)
# evaluate on tiles
tile_dim = rgb.shape[:2]
tile_dim_pad = [tile_dim[0]+2*lbl_margin, tile_dim[1]+2*lbl_margin]
grid_list = patch_extractor.make_grid(tile_dim_pad, patch_size, overlap)
if isinstance(model, list) or isinstance(model, tuple):
tile_preds = 0
for m in model:
tile_preds = tile_preds + self.infer_tile(m, rgb, grid_list, patch_size, tile_dim, tile_dim_pad, lbl_margin)
else:
tile_preds = self.infer_tile(model, rgb, grid_list, patch_size, tile_dim, tile_dim_pad, lbl_margin)
if save_conf:
misc_utils.save_file(os.path.join(pred_dir, '{}.npy'.format(file_name)), tile_preds[:, :, 1])
if densecrf:
d = dcrf.DenseCRF2D(*tile_preds.shape)
U = unary_from_softmax(np.ascontiguousarray(
data_utils.change_channel_order(tile_preds, False)))
d.setUnaryEnergy(U)
d.addPairwiseBilateral(rgbim=rgb, **crf_params)
Q = d.inference(5)
tile_preds = np.argmax(Q, axis=0).reshape(*tile_preds.shape[:2])
else:
tile_preds = np.argmax(tile_preds, -1)
iou_score = metric_utils.iou_metric(lbl/self.truth_val, tile_preds, eval_class=eval_class)
pstr, rstr = self.get_result_strings(file_name, iou_score, delta)
tm.misc_utils.verb_print(pstr, verbose)
report.append(rstr)
iou_a += iou_score[0, :]
iou_b += iou_score[1, :]
if visualize:
if self.encode_func:
vis_utils.compare_figures([rgb, self.encode_func(lbl), self.encode_func(tile_preds)], (1, 3),
fig_size=(15, 5))
else:
vis_utils.compare_figures([rgb, lbl, tile_preds], (1, 3), fig_size=(15, 5))
if pred_dir:
if self.encode_func:
misc_utils.save_file(os.path.join(pred_dir, '{}.png'.format(file_name)), self.encode_func(tile_preds))
else:
misc_utils.save_file(os.path.join(pred_dir, '{}.png'.format(file_name)), tile_preds)
pstr, rstr = self.get_result_strings('Overall', np.stack([iou_a, iou_b], axis=0), delta)
tm.misc_utils.verb_print(pstr, verbose)
report.append(rstr)
if report_dir:
misc_utils.make_dir_if_not_exist(report_dir)
misc_utils.save_file(os.path.join(report_dir, 'result.txt'), report)
return np.mean(iou_a / (iou_b + delta))*100
def infer_tile(self, model, rgb, grid_list, patch_size, tile_dim, tile_dim_pad, lbl_margin):
tile_preds = []
for patch in patch_extractor.patch_block(rgb, model.lbl_margin, grid_list, patch_size, False):
patch_preds = []
for aug_patch in self.ensembler.augment_data(patch):
for tsfm in self.tsfm:
tsfm_image = tsfm(image=aug_patch)
aug_patch = tsfm_image['image']
aug_patch = torch.unsqueeze(aug_patch, 0).to(self.device)
pred = F.softmax(model.inference(aug_patch), 1).detach().cpu().numpy()
patch_preds.append(pred)
tile_preds.append(data_utils.change_channel_order(self.ensembler.fuse_data(patch_preds), True)[0, :, :, :])
# stitch back to tiles
tile_preds = patch_extractor.unpatch_block(
np.array(tile_preds),
tile_dim_pad,
patch_size,
tile_dim,
[patch_size[0] - 2 * lbl_margin, patch_size[1] - 2 * lbl_margin],
overlap=2 * lbl_margin
)
return tile_preds
def infer(self, model, pred_dir, patch_size, overlap, ext='_mask', file_ext='png', visualize=False,
densecrf=False, crf_params=None):
if isinstance(model, list) or isinstance(model, tuple):
lbl_margin = model[0].lbl_margin
else:
lbl_margin = model.lbl_margin
if crf_params is None and densecrf:
crf_params = {'sxy': 3, 'srgb': 3, 'compat': 5}
misc_utils.make_dir_if_not_exist(pred_dir)
pbar = tqdm(self.rgb_files)
for rgb_file in pbar:
file_name = os.path.splitext(os.path.basename(rgb_file))[0].split('_')[0]
pbar.set_description('Inferring {}'.format(file_name))
# read data
rgb = misc_utils.load_file(rgb_file)[:, :, :3]
# evaluate on tiles
tile_dim = rgb.shape[:2]
tile_dim_pad = [tile_dim[0] + 2 * lbl_margin, tile_dim[1] + 2 * lbl_margin]
grid_list = patch_extractor.make_grid(tile_dim_pad, patch_size, overlap)
if isinstance(model, list) or isinstance(model, tuple):
tile_preds = 0
for m in model:
tile_preds = tile_preds + self.infer_tile(m, rgb, grid_list, patch_size, tile_dim, tile_dim_pad,
lbl_margin)
else:
tile_preds = self.infer_tile(model, rgb, grid_list, patch_size, tile_dim, tile_dim_pad, lbl_margin)
if densecrf:
d = dcrf.DenseCRF2D(*tile_preds.shape)
U = unary_from_softmax(np.ascontiguousarray(
data_utils.change_channel_order(tile_preds, False)))
d.setUnaryEnergy(U)
d.addPairwiseBilateral(rgbim=rgb, **crf_params)
Q = d.inference(5)
tile_preds = np.argmax(Q, axis=0).reshape(*tile_preds.shape[:2])
else:
tile_preds = np.argmax(tile_preds, -1)
if self.encode_func:
pred_img = self.encode_func(tile_preds)
else:
pred_img = tile_preds
if visualize:
vis_utils.compare_figures([rgb, pred_img], (1, 2), fig_size=(12, 5))
misc_utils.save_file(os.path.join(pred_dir, '{}{}.{}'.format(file_name, ext, file_ext)), pred_img)
class BaseEnsemble(object):
@staticmethod
def augment_data(img):
return [img, ]
@staticmethod
def fuse_data(img):
return img[0]
class MultiResEnsemble(BaseEnsemble):
def __init__(self, aug_size, fuse_size=None, rotate=True, use_max=False):
self.aug_size = aug_size
self.rotate = rotate
if self.rotate:
self.copy_per_img = 6
else:
self.copy_per_img = 1
if not fuse_size:
fuse_size = self.aug_size[-1]
self.fuse_size = fuse_size
self.use_max = use_max
def augment_data(self, img):
aug_images = []
for aug_size in self.aug_size:
rgb = skimage.transform.resize(img, (aug_size, aug_size), preserve_range=True).astype(np.uint8)
aug_images.append(rgb)
if self.rotate:
aug_images.append(rgb[::-1, :, :])
aug_images.append(rgb[:, ::-1, :])
aug_images.append(np.rot90(rgb))
aug_images.append(np.rot90(rgb)[::-1, :, :])
aug_images.append(np.rot90(rgb)[:, ::-1, :])
return aug_images
def fuse_data(self, imgs):
fuse_images = [[] for _ in range(len(self.aug_size))]
for cnt, img in enumerate(imgs):
rgb = skimage.transform.resize(data_utils.change_channel_order(img[0, :, :, :], to_channel_last=True),
(self.fuse_size, self.fuse_size))
if cnt % self.copy_per_img == 0:
fuse_images[cnt // self.copy_per_img].append(rgb)
elif cnt % self.copy_per_img == 1:
fuse_images[cnt // self.copy_per_img].append(rgb[::-1, :, :])
elif cnt % self.copy_per_img == 2:
fuse_images[cnt // self.copy_per_img].append(rgb[:, ::-1, :])
elif cnt % self.copy_per_img == 3:
fuse_images[cnt // self.copy_per_img].append(np.rot90(rgb, k=-1))
elif cnt % self.copy_per_img == 4:
fuse_images[cnt // self.copy_per_img].append(np.rot90(rgb[::-1, :, :], k=-1))
elif cnt % self.copy_per_img == 5:
fuse_images[cnt // self.copy_per_img].append(np.rot90(rgb[:, ::-1, :], k=-1))
fuse_tps = [np.mean(np.stack(a, axis=0), axis=0) for a in fuse_images]
if self.use_max:
pred = np.max(np.stack(fuse_tps, axis=0), axis=0)
else:
pred = np.mean(np.stack(fuse_tps, axis=0), axis=0)
return np.expand_dims(data_utils.change_channel_order(pred, to_channel_last=False), axis=0)
if __name__ == '__main__':
rgb_file = r'/media/ei-edl01/data/remote_sensing_data/inria/images/austin1.tif'
lbl_file = r'/media/ei-edl01/data/remote_sensing_data/inria/gt/austin1.tif'
conf_file = r'/hdd/Results/mrs/inria/ecresnet50_dcunet_dsinria_lre1e-04_lrd1e-04_ep50_bs7_ds50_dr0p1/austin1.npy'
rgb = misc_utils.load_file(rgb_file)
lbl_img, conf_img = misc_utils.load_file(lbl_file) / 255, misc_utils.load_file(conf_file)
osc = ObjectScorer(min_region=5, min_th=0.5, link_r=10, eps=2)
lbl_groups = osc.get_object_groups(lbl_img)
conf_groups = osc.get_object_groups(conf_img)
print(len(lbl_groups), len(conf_groups))
lbl_group_img = display_group(lbl_groups, lbl_img.shape[:2], need_return=True)
conf_group_img = display_group(conf_groups, conf_img.shape[:2], need_return=True)
vis_utils.compare_figures([rgb, lbl_group_img, conf_group_img], (1, 3), fig_size=(15, 5))