forked from allierc/ParticleGraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGNN_main.py
60 lines (46 loc) · 1.96 KB
/
GNN_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import glob
import logging
import time
from shutil import copyfile
import matplotlib.pyplot as plt
# import networkx as nx
import torch.nn as nn
import torch_geometric.data as data
import umap
from prettytable import PrettyTable
from scipy.optimize import curve_fit
from scipy.spatial import Delaunay
from torch_geometric.loader import DataLoader
from torch_geometric.utils.convert import to_networkx
from tqdm import trange
import os
import scipy.io
from sklearn import metrics
from matplotlib import rc
import matplotlib
import networkx as nx
# matplotlib.use("Qt5Agg")
from ParticleGraph.config import ParticleGraphConfig
from ParticleGraph.generators.particle_initialization import init_particles, init_mesh
from ParticleGraph.generators.utils import choose_model, choose_mesh_model, generate_from_data
from ParticleGraph.models.utils import *
from ParticleGraph.models.Ghost_Particles import Ghost_Particles
# os.environ["PATH"] += os.pathsep + '/usr/local/texlive/2023/bin/x86_64-linux'
from ParticleGraph.data_loaders import *
from ParticleGraph.utils import *
from ParticleGraph.fitting_models import linear_model
from ParticleGraph.embedding_cluster import *
from ParticleGraph.models import Division_Predictor
# from ParticleGraph.Plot3D import *
from GNN_particles_Ntype import *
if __name__ == '__main__':
config_list = ['arbitrary_3']
for config_file in config_list:
# Load parameters from config file
config = ParticleGraphConfig.from_yaml(f'./config/{config_file}.yaml')
# print(config.pretty())
device = set_device(config.training.device)
print(f'device {device}')
data_generate(config, device=device, visualize=True, run_vizualized=0, style='color', alpha=1, erase=True, bSave=True, step=config.simulation.n_frames // 25)
data_train(config, device=device)
data_test(config, visualize=True, verbose=False, best_model=8, run=0, step=config.simulation.n_frames // 25, test_simulation=False, device=device)