Skip to content

A flexible and user-friendly Python caching interface that provides a unified API for both synchronous and asynchronous caching, by wrapping and integrating two well-established caching libraries.

License

Notifications You must be signed in to change notification settings

bnlucas/cacheio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

10 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

cacheio

Python Version License PyPI - Version

A flexible and user-friendly Python caching utility that provides a unified interface for both synchronous and asynchronous caching, wrapping and integrating two well-established caching libraries: cachelib for synchronous caching, and aiocache for asynchronous caching.

cacheio simplifies caching in Python applications by providing a consistent API for both sync and async use cases โ€” no need to learn two different interfaces or manage separate dependencies manually. It intelligently loads only the backend dependencies you need.


Overview ๐Ÿš€

cacheio offers a unified caching interface for Python developers, abstracting away the differences between synchronous and asynchronous caching libraries. By wrapping cachelib for sync caching and aiocache for async caching, it lets you write caching logic that is clean, consistent, and easy to maintain.


Installation

You can install cacheio via pip. It supports optional dependency groups for backend support.

Basic Installation

Install core library without caching backends:

pip install cacheio

Installing with Backends

  • Synchronous caching (cachelib-based):
pip install "cacheio[sync]"
  • Asynchronous caching (aiocache-based):
pip install "cacheio[async]"
  • Full installation (both sync and async):
pip install "cacheio[full]"

Quick Start

Synchronous Caching

Use CacheFactory.memory_cache() to get a sync cache adapter backed by cachelib.

from cacheio import CacheFactory

cache = CacheFactory.memory_cache()

cache.set("my_key", "my_value", ttl=300)
print(cache.get("my_key"))

Asynchronous Caching

Use CacheFactory.async_memory_cache() to get an async cache adapter backed by aiocache.

import asyncio
from cacheio import CacheFactory

async def main():
    async_cache = CacheFactory.async_memory_cache()
    await async_cache.set("my_async_key", "my_async_value", ttl=300)
    val = await async_cache.get("my_async_key")
    print(val)

asyncio.run(main())

Using Decorators for Method Result Caching

cacheio provides four decorators to easily cache method results with minimal boilerplate:

  • @cached: Sync decorator with automatic cache key generation.
  • @memoized: Sync decorator with user-defined key function.
  • @async_cached: Async decorator with automatic cache key generation.
  • @async_memoized: Async decorator with user-defined async key function.

1. Synchronous @cached

Automatically caches method results using method arguments as the cache key.

from cacheio import cached
from cacheio.mixins import Cacheable

class UserService(Cacheable):
    @cached(ttl=60)
    def fetch_user(self, user_id: int) -> dict:
        print(f"Fetching user {user_id} from DB...")
        return {"id": user_id, "name": f"User_{user_id}"}

service = UserService()
print(service.fetch_user(1))  # Runs and caches
print(service.fetch_user(1))  # Returns cached result

2. Synchronous @memoized

Allows a custom cache key function for more control.

from cacheio import memoized
from cacheio.mixins import Cacheable

class UserService(Cacheable):
    @memoized(key_fn=lambda self, user_id, **kwargs: f"user:{user_id}", ttl=60)
    def fetch_user(self, user_id: int, request_id: str) -> dict:
        print(f"Fetching user {user_id} with request {request_id}")
        return {"id": user_id, "request": request_id}

service = UserService()
print(service.fetch_user(1, request_id="abc"))  # Cached by user_id only
print(service.fetch_user(1, request_id="xyz"))  # Returns cached result (same key)

3. Asynchronous @async_cached

Async version of @cached, for async methods.

import asyncio
from cacheio import async_cached
from cacheio.mixins import AsyncCacheable

class AsyncUserService(AsyncCacheable):
    @async_cached(ttl=60)
    async def fetch_user(self, user_id: int) -> dict:
        print(f"Fetching user {user_id} asynchronously...")
        await asyncio.sleep(2)
        return {"id": user_id, "name": f"User_{user_id}"}

async def main():
    service = AsyncUserService()
    print(await service.fetch_user(1))  # Runs and caches
    print(await service.fetch_user(1))  # Returns cached result

asyncio.run(main())

4. Asynchronous @async_memoized

Async decorator with a custom async key function.

import asyncio
from cacheio import async_memoized
from cacheio.mixins import AsyncCacheable

class AsyncUserService(AsyncCacheable):
    @async_memoized(key_fn=lambda self, user_id, **kwargs: f"user:{user_id}", ttl=60)
    async def fetch_user(self, user_id: int, request_id: str) -> dict:
        print(f"Fetching user {user_id} with request {request_id} asynchronously...")
        await asyncio.sleep(2)
        return {"id": user_id, "request": request_id}

async def main():
    service = AsyncUserService()
    print(await service.fetch_user(1, request_id="abc"))  # Cached
    print(await service.fetch_user(1, request_id="xyz"))  # Returns cached result

asyncio.run(main())

Configuration

You can customize global caching behavior via the config object and the configure() function.

Example:

from cacheio import config, configure

def update_settings(cfg):
    cfg.default_ttl = 600
    cfg.default_threshold = 1000

configure(update_settings)

This allows centralized control of defaults like TTL and cache size threshold.


Contributing

Contributions are welcome! Feel free to open issues or submit pull requests on our GitHub repository.


License

cacheio is distributed under the MIT license. See the LICENSE file for details.

About

A flexible and user-friendly Python caching interface that provides a unified API for both synchronous and asynchronous caching, by wrapping and integrating two well-established caching libraries.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages