You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
There are good reasons to supports helpers in user-space instead:
* Rapid connection tracking helper development, as developing code
in user-space is usually faster.
* Reliability: A buggy helper does not crash the kernel. Moreover,
we can monitor the helper process and restart it in case of problems.
* Security: Avoid complex string matching and mangling in kernel-space
running in privileged mode. Going further, we can even think about
running user-space helpers as a non-root process.
* Extensibility: It allows the development of very specific helpers (most
likely non-standard proprietary protocols) that are very likely not to be
accepted for mainline inclusion in the form of kernel-space connection
tracking helpers.
This patch adds the infrastructure to allow the implementation of
user-space conntrack helpers by means of the new nfnetlink subsystem
`nfnetlink_cthelper' and the existing queueing infrastructure
(nfnetlink_queue).
I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register
ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into
two pieces. This change is required not to break NAT sequence
adjustment and conntrack confirmation for traffic that is enqueued
to our user-space conntrack helpers.
Basic operation, in a few steps:
1) Register user-space helper by means of `nfct':
nfct helper add ftp inet tcp
[ It must be a valid existing helper supported by conntrack-tools ]
2) Add rules to enable the FTP user-space helper which is
used to track traffic going to TCP port 21.
For locally generated packets:
iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp
For non-locally generated packets:
iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp
3) Run the test conntrackd in helper mode (see example files under
doc/helper/conntrackd.conf
conntrackd
4) Generate FTP traffic going, if everything is OK, then conntrackd
should create expectations (you can check that with `conntrack':
conntrack -E expect
[NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp
[DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp
This confirms that our test helper is receiving packets including the
conntrack information, and adding expectations in kernel-space.
The user-space helper can also store its private tracking information
in the conntrack structure in the kernel via the CTA_HELP_INFO. The
kernel will consider this a binary blob whose layout is unknown. This
information will be included in the information that is transfered
to user-space via glue code that integrates nfnetlink_queue and
ctnetlink.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
0 commit comments