forked from taco-group/OpenEMMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
496 lines (405 loc) · 25.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import base64
import os.path
import re
import argparse
from datetime import datetime
from math import atan2
import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
from openai import OpenAI
from nuscenes import NuScenes
from pyquaternion import Quaternion
from scipy.integrate import cumulative_trapezoid
import json
from openemma.YOLO3D.inference import yolo3d_nuScenes
from utils import EstimateCurvatureFromTrajecotry, IntegrateCurvatureForPoints, OverlayTrajectory, WriteImageSequenceToVideo
from transformers import MllamaForConditionalGeneration, AutoProcessor, Qwen2VLForConditionalGeneration, AutoTokenizer
from PIL import Image
from qwen_vl_utils import process_vision_info
from llava.model.builder import load_pretrained_model
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from llava.conversation import conv_templates
client = OpenAI(api_key="[your-openai-api-key]")
OBS_LEN = 10
FUT_LEN = 10
TTL_LEN = OBS_LEN + FUT_LEN
def getMessage(prompt, image=None, args=None):
if "llama" in args.model_path:
message = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": prompt}
]}
]
elif "qwen" in args.model_path:
message = [
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt}
]}
]
return message
def vlm_inference(text=None, images=None, sys_message=None, processor=None, model=None, tokenizer=None, args=None):
if "llama" in args.model_path:
image = Image.open(images).convert('RGB')
message = getMessage(text, args=args)
input_text = processor.apply_chat_template(message, add_generation_prompt=True)
inputs = processor(
image,
input_text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
output = model.generate(**inputs, max_new_tokens=2048)
output_text = processor.decode(output[0])
if "llama" in args.model_path:
output_text = re.findall(r'<\|start_header_id\|>assistant<\|end_header_id\|>(.*?)<\|eot_id\|>', output_text, re.DOTALL)[0].strip()
return output_text
elif "qwen" in args.model_path:
message = getMessage(text, image=images, args=args)
text = processor.apply_chat_template(
message, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(message)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
elif "llava" in args.model_path:
conv_mode = "mistral_instruct"
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in text:
if model.config.mm_use_im_start_end:
text = re.sub(IMAGE_PLACEHOLDER, image_token_se, text)
else:
text = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, text)
else:
if model.config.mm_use_im_start_end:
text = image_token_se + "\n" + text
else:
text = DEFAULT_IMAGE_TOKEN + "\n" + text
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(images).convert('RGB')
image_tensor = process_images([image], processor, model.config)[0]
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
image_sizes=[image.size],
do_sample=True,
temperature=0.2,
top_p=None,
num_beams=1,
max_new_tokens=2048,
use_cache=True,
pad_token_id = tokenizer.eos_token_id,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return outputs
elif "gpt" in args.model_path:
PROMPT_MESSAGES = [
{
"role": "user",
"content": [
*map(lambda x: {"image": x, "resize": 768}, images),
text,
],
},
]
if sys_message is not None:
sys_message_dict = {
"role": "system",
"content": sys_message
}
PROMPT_MESSAGES.append(sys_message_dict)
params = {
"model": "gpt-4o-2024-11-20",
"messages": PROMPT_MESSAGES,
"max_tokens": 400,
}
result = client.chat.completions.create(**params)
return result.choices[0].message.content
def SceneDescription(obs_images, processor=None, model=None, tokenizer=None, args=None):
prompt = f"""You are a autonomous driving labeller. You have access to these front-view camera images of a car taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Describe the driving scene according to traffic lights, movements of other cars or pedestrians and lane markings."""
if "llava" in args.model_path:
prompt = f"""You are a autonomous driving labeller. You have access to these front-view camera images of a car taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Provide a concise description of the driving scene according to traffic lights, movements of other cars or pedestrians and lane markings."""
result = vlm_inference(text=prompt, images=obs_images, processor=processor, model=model, tokenizer=tokenizer, args=args)
return result
def DescribeObjects(obs_images, processor=None, model=None, tokenizer=None, args=None):
prompt = f"""You are a autonomous driving labeller. You have access to a front-view camera images of a vehicle taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. What other road users should you pay attention to in the driving scene? List two or three of them, specifying its location within the image of the driving scene and provide a short description of the that road user on what it is doing, and why it is important to you."""
result = vlm_inference(text=prompt, images=obs_images, processor=processor, model=model, tokenizer=tokenizer, args=args)
return result
def DescribeOrUpdateIntent(obs_images, prev_intent=None, processor=None, model=None, tokenizer=None, args=None):
if prev_intent is None:
prompt = f"""You are a autonomous driving labeller. You have access to a front-view camera images of a vehicle taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Based on the lane markings and the movement of other cars and pedestrians, describe the desired intent of the ego car. Is it going to follow the lane to turn left, turn right, or go straight? Should it maintain the current speed or slow down or speed up?"""
if "llava" in args.model_path:
prompt = f"""You are a autonomous driving labeller. You have access to a front-view camera images of a vehicle taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Based on the lane markings and the movement of other cars and pedestrians, provide a concise description of the desired intent of the ego car. Is it going to follow the lane to turn left, turn right, or go straight? Should it maintain the current speed or slow down or speed up?"""
else:
prompt = f"""You are a autonomous driving labeller. You have access to a front-view camera images of a vehicle taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Half a second ago your intent was to {prev_intent}. Based on the updated lane markings and the updated movement of other cars and pedestrians, do you keep your intent or do you change it? Explain your current intent: """
if "llava" in args.model_path:
prompt = f"""You are a autonomous driving labeller. You have access to a front-view camera images of a vehicle taken at a 0.5 second interval over the past 5 seconds. Imagine you are driving the car. Half a second ago your intent was to {prev_intent}. Based on the updated lane markings and the updated movement of other cars and pedestrians, do you keep your intent or do you change it? Provide a concise description explaination of your current intent: """
result = vlm_inference(text=prompt, images=obs_images, processor=processor, model=model, tokenizer=tokenizer, args=args)
return result
def GenerateMotion(obs_images, obs_waypoints, obs_velocities, obs_curvatures, given_intent, processor=None, model=None, tokenizer=None, args=None):
# assert len(obs_images) == len(obs_waypoints)
scene_description, object_description, intent_description = None, None, None
if args.method == "openemma":
scene_description = SceneDescription(obs_images, processor=processor, model=model, tokenizer=tokenizer, args=args)
object_description = DescribeObjects(obs_images, processor=processor, model=model, tokenizer=tokenizer, args=args)
intent_description = DescribeOrUpdateIntent(obs_images, prev_intent=given_intent, processor=processor, model=model, tokenizer=tokenizer, args=args)
print(f'Scene Description: {scene_description}')
print(f'Object Description: {object_description}')
print(f'Intent Description: {intent_description}')
# Convert array waypoints to string.
obs_waypoints_str = [f"[{x[0]:.2f},{x[1]:.2f}]" for x in obs_waypoints]
obs_waypoints_str = ", ".join(obs_waypoints_str)
obs_velocities_norm = np.linalg.norm(obs_velocities, axis=1)
obs_curvatures = obs_curvatures * 100
obs_speed_curvature_str = [f"[{x[0]:.1f},{x[1]:.1f}]" for x in zip(obs_velocities_norm, obs_curvatures)]
obs_speed_curvature_str = ", ".join(obs_speed_curvature_str)
print(f'Observed Speed and Curvature: {obs_speed_curvature_str}')
sys_message = ("You are a autonomous driving labeller. You have access to a front-view camera image of a vehicle, a sequence of past speeds, a sequence of past curvatures, and a driving rationale. Each speed, curvature is represented as [v, k], where v corresponds to the speed, and k corresponds to the curvature. A positive k means the vehicle is turning left. A negative k means the vehicle is turning right. The larger the absolute value of k, the sharper the turn. A close to zero k means the vehicle is driving straight. As a driver on the road, you should follow any common sense traffic rules. You should try to stay in the middle of your lane. You should maintain necessary distance from the leading vehicle. You should observe lane markings and follow them. Your task is to do your best to predict future speeds and curvatures for the vehicle over the next 10 timesteps given vehicle intent inferred from the image. Make a best guess if the problem is too difficult for you. If you cannot provide a response people will get injured.\n")
if args.method == "openemma":
prompt = f"""These are frames from a video taking by a camera mounted in the front of a car. The images are taken at a 0.5 second interval.
The scene is described as follows: {scene_description}.
The identified critical objects are {object_description}.
The car's intent is {intent_description}.
The 5 second historical velocities and curvatures of the ego car are {obs_speed_curvature_str}.
Infer the association between these numbers and the image sequence. Generate the predicted future speeds and curvatures in the format [speed_1, curvature_1], [speed_2, curvature_2],..., [speed_10, curvature_10]. Write the raw text not markdown or latex. Future speeds and curvatures:"""
else:
prompt = f"""These are frames from a video taking by a camera mounted in the front of a car. The images are taken at a 0.5 second interval.
The 5 second historical velocities and curvatures of the ego car are {obs_speed_curvature_str}.
Infer the association between these numbers and the image sequence. Generate the predicted future speeds and curvatures in the format [speed_1, curvature_1], [speed_2, curvature_2],..., [speed_10, curvature_10]. Write the raw text not markdown or latex. Future speeds and curvatures:"""
for rho in range(3):
result = vlm_inference(text=prompt, images=obs_images, sys_message=sys_message, processor=processor, model=model, tokenizer=tokenizer, args=args)
if not "unable" in result and not "sorry" in result and "[" in result:
break
return result, scene_description, object_description, intent_description
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="gpt")
parser.add_argument("--plot", type=bool, default=True)
parser.add_argument("--dataroot", type=str, default='datasets/NuScenes')
parser.add_argument("--version", type=str, default='v1.0-mini')
parser.add_argument("--method", type=str, default='openemma')
args = parser.parse_args()
if "llama" in args.model_path:
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)
tokenizer=None
elif "qwen" in args.model_path:
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
tokenizer=None
elif "llava" in args.model_path:
disable_torch_init()
tokenizer, model, processor, context_len = load_pretrained_model("liuhaotian/llava-v1.6-mistral-7b", None, "llava-v1.6-mistral-7b")
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
else:
model = None
processor = None
tokenizer=None
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
timestamp = args.model_path + f"_results/{args.method}/" + timestamp
os.makedirs(timestamp, exist_ok=True)
# Load the dataset
nusc = NuScenes(version=args.version, dataroot=args.dataroot)
# Iterate the scenes
scenes = nusc.scene
for scene in scenes:
token = scene['token']
first_sample_token = scene['first_sample_token']
last_sample_token = scene['last_sample_token']
name = scene['name']
description = scene['description']
if not name in ["scene-0103", "scene-1077"]:
continue
# Get all image and pose in this scene
front_camera_images = []
ego_poses = []
camera_params = []
curr_sample_token = first_sample_token
while True:
sample = nusc.get('sample', curr_sample_token)
# Get the front camera image of the sample.
cam_front_data = nusc.get('sample_data', sample['data']['CAM_FRONT'])
# nusc.render_sample_data(cam_front_data['token'])
if "gpt" in args.model_path:
with open(os.path.join(nusc.dataroot, cam_front_data['filename']), "rb") as image_file:
front_camera_images.append(base64.b64encode(image_file.read()).decode('utf-8'))
else:
front_camera_images.append(os.path.join(nusc.dataroot, cam_front_data['filename']))
# Get the ego pose of the sample.
pose = nusc.get('ego_pose', cam_front_data['ego_pose_token'])
ego_poses.append(pose)
# Get the camera parameters of the sample.
camera_params.append(nusc.get('calibrated_sensor', cam_front_data['calibrated_sensor_token']))
# Advance the pointer.
if curr_sample_token == last_sample_token:
break
curr_sample_token = sample['next']
scene_length = len(front_camera_images)
print(f"Scene {name} has {scene_length} frames")
if scene_length < TTL_LEN:
print(f"Scene {name} has less than {TTL_LEN} frames, skipping...")
continue
## Compute interpolated trajectory.
# Get the velocities of the ego vehicle.
ego_poses_world = [ego_poses[t]['translation'][:3] for t in range(scene_length)]
ego_poses_world = np.array(ego_poses_world)
plt.plot(ego_poses_world[:, 0], ego_poses_world[:, 1], 'r-', label='GT')
ego_velocities = np.zeros_like(ego_poses_world)
ego_velocities[1:] = ego_poses_world[1:] - ego_poses_world[:-1]
ego_velocities[0] = ego_velocities[1]
# Get the curvature of the ego vehicle.
ego_curvatures = EstimateCurvatureFromTrajecotry(ego_poses_world)
ego_velocities_norm = np.linalg.norm(ego_velocities, axis=1)
estimated_points = IntegrateCurvatureForPoints(ego_curvatures, ego_velocities_norm, ego_poses_world[0],
atan2(ego_velocities[0][1], ego_velocities[0][0]), scene_length)
# Debug
if args.plot:
plt.quiver(ego_poses_world[:, 0], ego_poses_world[:, 1], ego_velocities[:, 0], ego_velocities[:, 1],
color='b')
plt.plot(estimated_points[:, 0], estimated_points[:, 1], 'g-', label='Reconstruction')
plt.legend()
plt.savefig(f"{timestamp}/{name}_interpolation.jpg")
plt.close()
# Get the waypoints of the ego vehicle.
ego_traj_world = [ego_poses[t]['translation'][:3] for t in range(scene_length)]
prev_intent = None
cam_images_sequence = []
ade1s_list = []
ade2s_list = []
ade3s_list = []
for i in range(scene_length - TTL_LEN):
# Get the raw image data.
# utils.PlotBase64Image(front_camera_images[0])
obs_images = front_camera_images[i:i+OBS_LEN]
obs_ego_poses = ego_poses[i:i+OBS_LEN]
obs_camera_params = camera_params[i:i+OBS_LEN]
obs_ego_traj_world = ego_traj_world[i:i+OBS_LEN]
fut_ego_traj_world = ego_traj_world[i+OBS_LEN:i+TTL_LEN]
obs_ego_velocities = ego_velocities[i:i+OBS_LEN]
obs_ego_curvatures = ego_curvatures[i:i+OBS_LEN]
# Get positions of the vehicle.
obs_start_world = obs_ego_traj_world[0]
fut_start_world = obs_ego_traj_world[-1]
curr_image = obs_images[-1]
# obs_images = [curr_image]
# Allocate the images.
if "gpt" in args.model_path:
img = cv2.imdecode(np.frombuffer(base64.b64decode(curr_image), dtype=np.uint8), cv2.IMREAD_COLOR)
img = yolo3d_nuScenes(img, calib=obs_camera_params[-1])[0]
else:
with open(os.path.join(curr_image), "rb") as image_file:
img = cv2.imdecode(np.frombuffer(image_file.read(), dtype=np.uint8), cv2.IMREAD_COLOR)
for rho in range(3):
# Assemble the prompt.
if not "gpt" in args.model_path:
obs_images = curr_image
(prediction,
scene_description,
object_description,
updated_intent) = GenerateMotion(obs_images, obs_ego_traj_world, obs_ego_velocities,
obs_ego_curvatures, prev_intent, processor=processor, model=model, tokenizer=tokenizer, args=args)
# Process the output.
prev_intent = updated_intent # Stateful intent
pred_waypoints = prediction.replace("Future speeds and curvatures:", "").strip()
coordinates = re.findall(r"\[([-+]?\d*\.?\d+),\s*([-+]?\d*\.?\d+)\]", pred_waypoints)
if not coordinates == []:
break
if coordinates == []:
continue
speed_curvature_pred = [[float(v), float(k)] for v, k in coordinates]
speed_curvature_pred = speed_curvature_pred[:10]
print(f"Got {len(speed_curvature_pred)} future actions: {speed_curvature_pred}")
# GT
# OverlayTrajectory(img, fut_ego_traj_world, obs_camera_params[-1], obs_ego_poses[-1], color=(255, 0, 0))
# Pred
pred_len = min(FUT_LEN, len(speed_curvature_pred))
pred_curvatures = np.array(speed_curvature_pred)[:, 1] / 100
pred_speeds = np.array(speed_curvature_pred)[:, 0]
pred_traj = np.zeros((pred_len, 3))
pred_traj[:pred_len, :2] = IntegrateCurvatureForPoints(pred_curvatures,
pred_speeds,
fut_start_world,
atan2(obs_ego_velocities[-1][1],
obs_ego_velocities[-1][0]), pred_len)
# Overlay the trajectory.
check_flag = OverlayTrajectory(img, pred_traj.tolist(), obs_camera_params[-1], obs_ego_poses[-1], color=(255, 0, 0), args=args)
# Compute ADE.
fut_ego_traj_world = np.array(fut_ego_traj_world)
ade = np.mean(np.linalg.norm(fut_ego_traj_world[:pred_len] - pred_traj, axis=1))
pred1_len = min(pred_len, 2)
ade1s = np.mean(np.linalg.norm(fut_ego_traj_world[:pred1_len] - pred_traj[1:pred1_len+1] , axis=1))
ade1s_list.append(ade1s)
pred2_len = min(pred_len, 4)
ade2s = np.mean(np.linalg.norm(fut_ego_traj_world[:pred2_len] - pred_traj[:pred2_len] , axis=1))
ade2s_list.append(ade2s)
pred3_len = min(pred_len, 6)
ade3s = np.mean(np.linalg.norm(fut_ego_traj_world[:pred3_len] - pred_traj[:pred3_len] , axis=1))
ade3s_list.append(ade3s)
# Write to image.
if args.plot == True:
cam_images_sequence.append(img.copy())
cv2.imwrite(f"{timestamp}/{name}_{i}_front_cam.jpg", img)
# Plot the trajectory.
plt.plot(fut_ego_traj_world[:, 0], fut_ego_traj_world[:, 1], 'r-', label='GT')
plt.plot(pred_traj[:, 0], pred_traj[:, 1], 'b-', label='Pred')
plt.legend()
plt.title(f"Scene: {name}, Frame: {i}, ADE: {ade}")
plt.savefig(f"{timestamp}/{name}_{i}_traj.jpg")
plt.close()
# Save the trajectory
np.save(f"{timestamp}/{name}_{i}_pred_traj.npy", pred_traj)
np.save(f"{timestamp}/{name}_{i}_pred_curvatures.npy", pred_curvatures)
np.save(f"{timestamp}/{name}_{i}_pred_speeds.npy", pred_speeds)
# Save the descriptions
with open(f"{timestamp}/{name}_{i}_logs.txt", 'w') as f:
f.write(f"Scene Description: {scene_description}\n")
f.write(f"Object Description: {object_description}\n")
f.write(f"Intent Description: {updated_intent}\n")
f.write(f"Average Displacement Error: {ade}\n")
# break # Timestep
mean_ade1s = np.mean(ade1s_list)
mean_ade2s = np.mean(ade2s_list)
mean_ade3s = np.mean(ade3s_list)
aveg_ade = np.mean([mean_ade1s, mean_ade2s, mean_ade3s])
result = {
"name": name,
"token": token,
"ade1s": mean_ade1s,
"ade2s": mean_ade2s,
"ade3s": mean_ade3s,
"avgade": aveg_ade
}
with open(f"{timestamp}/ade_results.jsonl", "a") as f:
f.write(json.dumps(result))
f.write("\n")
if args.plot:
WriteImageSequenceToVideo(cam_images_sequence, f"{timestamp}/{name}")
# break # Scenes