-
Notifications
You must be signed in to change notification settings - Fork 21
/
Mean shift_python27_opencv.py
42 lines (41 loc) · 1.48 KB
/
Mean shift_python27_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import cv2
cap = cv2.VideoCapture('videoxx-5min.avi')
# take first frame of the video
ret,frame = cap.read()
# setup initial location of window
r,h,c,w = 517,15,2517,10 # simply hardcoded the values
track_window = (c,r,w,h)
# set up the ROI for tracking
roi = frame[r:r+h, c:c+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while(cap.isOpened()):
ret ,frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply meanshift to get the new location
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
# Draw it on image
x,y,w,h = track_window
cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
# box = cv2.cv.BoxPoints(rect)
# box = np.int0(box)
print 'x = ', x+w/2
print 'y = ', y+h/2
cv2.namedWindow('frame', cv2.WINDOW_OPENGL)
cv2.imshow('frame',frame)
k = cv2.waitKey(60) & 0xff
if k == 27:
break
# else:
# cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.destroyAllWindows()
cap.release()