|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +#Suppose you have an array of 1001 integers. The integers are in random order, |
| 4 | +# but you know each of the integers is between 1 and 1000 (inclusive). |
| 5 | +# In addition, each number appears only once in the array, except for |
| 6 | +# one number, which occurs twice. Assume that you can access each element |
| 7 | +# of the array only once. Describe an algorithm to find the repeated number. |
| 8 | +# If you used auxiliary storage in your algorithm, can you find an algorithm |
| 9 | +# that does not require it? |
| 10 | + |
| 11 | +import random |
| 12 | +import sys |
| 13 | + |
| 14 | +def GenArray(length): |
| 15 | + array = range(1,length + 1) |
| 16 | + dup = random.randint(1, length) |
| 17 | + print 'Dup num generated: %s' % dup |
| 18 | + array.append(dup) |
| 19 | + random.shuffle(array) |
| 20 | + return array |
| 21 | + |
| 22 | +def XorFind(array): |
| 23 | + print 'Start Xor find ...' |
| 24 | + found = 0 |
| 25 | + for i, item in enumerate(array): |
| 26 | + found = found ^ item ^ i |
| 27 | + # An alternative: |
| 28 | + #for i in xrange(1, length + 2): |
| 29 | + # found = found ^ array[i-1] ^ (i - 1) |
| 30 | + print 'Dup num founded (Xor): %s' % found |
| 31 | + |
| 32 | +def SumFind(array): |
| 33 | + print 'Start Sum find ...' |
| 34 | + length = len(array) |
| 35 | + expect_sum = (1 + length - 1) * (length - 1) / 2 |
| 36 | + real_sum = reduce(lambda x, y : x + y, array) |
| 37 | + print 'Dup num founded (Sum): %s' % (real_sum - expect_sum) |
| 38 | + |
| 39 | +if __name__ == '__main__': |
| 40 | + length = int(sys.argv[1]) |
| 41 | + array = GenArray(length) |
| 42 | + XorFind(array) |
| 43 | + SumFind(array) |
0 commit comments