forked from gabrielchua/open-notebooklm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
155 lines (130 loc) · 5.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
utils.py
Functions:
- generate_script: Get the dialogue from the LLM.
- call_llm: Call the LLM with the given prompt and dialogue format.
- parse_url: Parse the given URL and return the text content.
- generate_podcast_audio: Generate audio for podcast using TTS or advanced audio models.
- _use_suno_model: Generate advanced audio using Bark.
- _use_melotts_api: Generate audio using TTS model.
- _get_melo_tts_params: Get TTS parameters based on speaker and language.
"""
# Standard library imports
import time
from typing import Any, Union
# Third-party imports
import instructor
import requests
from bark import SAMPLE_RATE, generate_audio, preload_models
from fireworks.client import Fireworks
from gradio_client import Client
from scipy.io.wavfile import write as write_wav
# Local imports
from constants import (
FIREWORKS_API_KEY,
FIREWORKS_MODEL_ID,
FIREWORKS_MAX_TOKENS,
FIREWORKS_TEMPERATURE,
MELO_API_NAME,
MELO_TTS_SPACES_ID,
MELO_RETRY_ATTEMPTS,
MELO_RETRY_DELAY,
JINA_READER_URL,
JINA_RETRY_ATTEMPTS,
JINA_RETRY_DELAY,
)
from schema import ShortDialogue, MediumDialogue
# Initialize Fireworks client, with Instructor patch
fw_client = Fireworks(api_key=FIREWORKS_API_KEY)
fw_client = instructor.from_fireworks(fw_client)
# Initialize Hugging Face client
hf_client = Client(MELO_TTS_SPACES_ID)
# Download and load all models for Bark
preload_models()
def generate_script(
system_prompt: str,
input_text: str,
output_model: Union[ShortDialogue, MediumDialogue],
) -> Union[ShortDialogue, MediumDialogue]:
"""Get the dialogue from the LLM."""
# Call the LLM for the first time
first_draft_dialogue = call_llm(system_prompt, input_text, output_model)
# Call the LLM a second time to improve the dialogue
system_prompt_with_dialogue = f"{system_prompt}\n\nHere is the first draft of the dialogue you provided:\n\n{first_draft_dialogue.model_dump_json()}."
final_dialogue = call_llm(system_prompt_with_dialogue, "Please improve the dialogue. Make it more natural and engaging.", output_model)
return final_dialogue
def call_llm(system_prompt: str, text: str, dialogue_format: Any) -> Any:
"""Call the LLM with the given prompt and dialogue format."""
response = fw_client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": text},
],
model=FIREWORKS_MODEL_ID,
max_tokens=FIREWORKS_MAX_TOKENS,
temperature=FIREWORKS_TEMPERATURE,
response_model=dialogue_format,
)
return response
def parse_url(url: str) -> str:
"""Parse the given URL and return the text content."""
for attempt in range(JINA_RETRY_ATTEMPTS):
try:
full_url = f"{JINA_READER_URL}{url}"
response = requests.get(full_url, timeout=60)
response.raise_for_status() # Raise an exception for bad status codes
break
except requests.RequestException as e:
if attempt == JINA_RETRY_ATTEMPTS - 1: # Last attempt
raise ValueError(
f"Failed to fetch URL after {JINA_RETRY_ATTEMPTS} attempts: {e}"
) from e
time.sleep(JINA_RETRY_DELAY) # Wait for X second before retrying
return response.text
def generate_podcast_audio(
text: str, speaker: str, language: str, use_advanced_audio: bool, random_voice_number: int
) -> str:
"""Generate audio for podcast using TTS or advanced audio models."""
if use_advanced_audio:
return _use_suno_model(text, speaker, language, random_voice_number)
else:
return _use_melotts_api(text, speaker, language)
def _use_suno_model(text: str, speaker: str, language: str, random_voice_number: int) -> str:
"""Generate advanced audio using Bark."""
host_voice_num = str(random_voice_number)
guest_voice_num = str(random_voice_number + 1)
audio_array = generate_audio(
text,
history_prompt=f"v2/{language}_speaker_{host_voice_num if speaker == 'Host (Jane)' else guest_voice_num}",
)
file_path = f"audio_{language}_{speaker}.mp3"
write_wav(file_path, SAMPLE_RATE, audio_array)
return file_path
def _use_melotts_api(text: str, speaker: str, language: str) -> str:
"""Generate audio using TTS model."""
accent, speed = _get_melo_tts_params(speaker, language)
for attempt in range(MELO_RETRY_ATTEMPTS):
try:
return hf_client.predict(
text=text,
language=language,
speaker=accent,
speed=speed,
api_name=MELO_API_NAME,
)
except Exception as e:
if attempt == MELO_RETRY_ATTEMPTS - 1: # Last attempt
raise # Re-raise the last exception if all attempts fail
time.sleep(MELO_RETRY_DELAY) # Wait for X second before retrying
def _get_melo_tts_params(speaker: str, language: str) -> tuple[str, float]:
"""Get TTS parameters based on speaker and language."""
if speaker == "Guest":
accent = "EN-US" if language == "EN" else language
speed = 0.9
else: # host
accent = "EN-Default" if language == "EN" else language
speed = (
1.1 if language != "EN" else 1
) # if the language is not English, try speeding up so it'll sound different from the host
# for non-English, there is only one voice
return accent, speed