-
Notifications
You must be signed in to change notification settings - Fork 16
/
datarepresentation.py
424 lines (349 loc) · 15.9 KB
/
datarepresentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from segtok.segmenter import split_multi
from segtok.tokenizer import web_tokenizer, split_contractions
import networkx as nx
import numpy as np
import string
import os
import math
import jellyfish
import re
STOPWORD_WEIGHT = 'bi'
class DataCore(object):
def __init__(self, text, stopword_set, windowsSize, n, tagsToDiscard = set(['u', 'd']), exclude = set(string.punctuation)):
self.number_of_sentences = 0
self.number_of_words = 0
self.terms = {}
self.candidates = {}
self.sentences_obj = []
self.sentences_str = []
self.G = nx.DiGraph()
self.exclude = exclude
self.tagsToDiscard = tagsToDiscard
self.freq_ns = {}
for i in range(n):
self.freq_ns[i+1] = 0.
self.stopword_set = stopword_set
self._build(text, windowsSize, n)
def build_candidate(self, candidate_string):
sentences_str = [w for w in split_contractions(web_tokenizer(candidate_string.lower())) if not (w.startswith("'") and len(w) > 1) and len(w) > 0]
candidate_terms = []
for (i, word) in enumerate(sentences_str):
tag = self.getTag(word, i)
term_obj = self.getTerm(word, save_non_seen=False)
if term_obj.tf == 0:
term_obj = None
candidate_terms.append( (tag, word, term_obj) )
if len([cand for cand in candidate_terms if cand[2] != None]) == 0:
invalid_virtual_cand = composed_word(None)
return invalid_virtual_cand
virtual_cand = composed_word(candidate_terms)
return virtual_cand
# Build the datacore features
def _build(self, text, windowsSize, n):
text = self.pre_filter(text)
self.sentences_str = [ [w for w in split_contractions(web_tokenizer(s)) if not (w.startswith("'") and len(w) > 1) and len(w) > 0] for s in list(split_multi(text)) if len(s.strip()) > 0]
self.number_of_sentences = len(self.sentences_str)
pos_text = 0
block_of_word_obj = []
sentence_obj_aux = []
for (sentence_id, sentence) in enumerate(self.sentences_str):
sentence_obj_aux = []
block_of_word_obj = []
for (pos_sent, word) in enumerate(sentence):
if len([c for c in word if c in self.exclude]) == len(word): # If the word is based on exclude chars
if len(block_of_word_obj) > 0:
sentence_obj_aux.append( block_of_word_obj )
block_of_word_obj = []
else:
tag = self.getTag(word, pos_sent)
term_obj = self.getTerm(word)
term_obj.addOccur(tag, sentence_id, pos_sent, pos_text)
pos_text += 1
#Create co-occurrence matrix
if tag not in self.tagsToDiscard:
word_windows = list(range( max(0, len(block_of_word_obj)-windowsSize), len(block_of_word_obj) ))
for w in word_windows:
if block_of_word_obj[w][0] not in self.tagsToDiscard:
self.addCooccur(block_of_word_obj[w][2], term_obj)
#Generate candidate keyphrase list
candidate = [ (tag, word, term_obj) ]
cand = composed_word(candidate)
self.addOrUpdateComposedWord(cand)
word_windows = list(range( max(0, len(block_of_word_obj)-(n-1)), len(block_of_word_obj) ))[::-1]
for w in word_windows:
candidate.append(block_of_word_obj[w])
self.freq_ns[len(candidate)] += 1.
cand = composed_word(candidate[::-1])
self.addOrUpdateComposedWord(cand)
# Add term to the block of words' buffer
block_of_word_obj.append( (tag, word, term_obj) )
if len(block_of_word_obj) > 0:
sentence_obj_aux.append( block_of_word_obj )
if len(sentence_obj_aux) > 0:
self.sentences_obj.append(sentence_obj_aux)
if len(block_of_word_obj) > 0:
sentence_obj_aux.append( block_of_word_obj )
if len(sentence_obj_aux) > 0:
self.sentences_obj.append(sentence_obj_aux)
self.number_of_words = pos_text
def build_single_terms_features(self, features=None):
validTerms = [ term for term in self.terms.values() if not term.stopword ]
validTFs = (np.array([ x.tf for x in validTerms ]))
if len(validTFs) == 0:
return
avgTF = validTFs.mean()
stdTF = validTFs.std()
maxTF = max([ x.tf for x in self.terms.values()])
list(map(lambda x: x.updateH(maxTF=maxTF, avgTF=avgTF, stdTF=stdTF, number_of_sentences=self.number_of_sentences, features=features), self.terms.values()))
def build_mult_terms_features(self, features=None):
list(map(lambda x: x.updateH(features=features), [cand for cand in self.candidates.values() if cand.isValid()]))
def pre_filter(self, text):
prog = re.compile("^(\\s*([A-Z]))")
parts = text.split('\n')
buffer = ''
for part in parts:
sep = ' '
if prog.match(part):
sep = '\n\n'
buffer += sep + part.replace('\t',' ')
return buffer
def getTag(self, word, i):
try:
w2 = word.replace(",","")
float(w2)
return "d"
except:
cdigit = len([c for c in word if c.isdigit()])
calpha = len([c for c in word if c.isalpha()])
if ( cdigit > 0 and calpha > 0 ) or (cdigit == 0 and calpha == 0) or len([c for c in word if c in self.exclude]) > 1:
return "u"
if len(word) == len([c for c in word if c.isupper()]):
return "a"
if len([c for c in word if c.isupper()]) == 1 and len(word) > 1 and word[0].isupper() and i > 0:
return "n"
return "p"
def getTerm(self, str_word, save_non_seen=True):
unique_term = str_word.lower()
simples_sto = unique_term in self.stopword_set
if unique_term.endswith('s') and len(unique_term) > 3:
unique_term = unique_term[:-1]
if unique_term in self.terms:
return self.terms[unique_term]
# Include this part
simples_unique_term = unique_term
for pontuation in self.exclude:
simples_unique_term = simples_unique_term.replace(pontuation, '')
# until here
isstopword = simples_sto or unique_term in self.stopword_set or len(simples_unique_term) < 3
term_id = len(self.terms)
term_obj = single_word(unique_term, term_id, self.G)
term_obj.stopword = isstopword
if save_non_seen:
self.G.add_node(term_id)
self.terms[unique_term] = term_obj
return term_obj
def addCooccur(self, left_term, right_term):
if right_term.id not in self.G[left_term.id]:
self.G.add_edge(left_term.id, right_term.id, TF=0.)
self.G[left_term.id][right_term.id]["TF"]+=1.
def addOrUpdateComposedWord(self, cand):
if cand.unique_kw not in self.candidates:
self.candidates[cand.unique_kw] = cand
else:
self.candidates[cand.unique_kw].uptadeCand(cand)
self.candidates[cand.unique_kw].tf += 1.
class composed_word(object):
def __init__(self, terms): # [ (tag, word, term_obj) ]
if terms == None:
self.start_or_end_stopwords = True
self.tags = set()
return
self.tags = set([''.join([ w[0] for w in terms ])])
self.kw = ' '.join( [ w[1] for w in terms ] )
self.unique_kw = self.kw.lower()
self.size = len(terms)
self.terms = [ w[2] for w in terms if w[2] != None ]
self.tf = 0.
self.integrity = 1.
self.H = 1.
self.start_or_end_stopwords = self.terms[0].stopword or self.terms[-1].stopword
def uptadeCand(self, cand):
for tag in cand.tags:
self.tags.add( tag )
def isValid(self):
isValid = False
for tag in self.tags:
isValid = isValid or ( "u" not in tag and "d" not in tag )
return isValid and not self.start_or_end_stopwords
def get_composed_feature(self, feature_name, discart_stopword=True):
list_of_features = [ getattr(term, feature_name) for term in self.terms if ( discart_stopword and not term.stopword ) or not discart_stopword ]
sum_f = sum(list_of_features)
prod_f = np.prod(list_of_features)
return ( sum_f, prod_f, prod_f /(sum_f + 1) )
def build_features(self, doc_id=None, keys=None, rel=True, rel_approx=True, isVirtual=False, features=['WFreq', 'WRel', 'tf', 'WCase', 'WPos', 'WSpread'], _stopword=[True, False]):
columns = []
seen = set()
features_cand = []
if doc_id != None:
columns.append('doc_id')
features_cand.append(doc_id)
if keys != None:
if rel:
columns.append('rel')
if self.unique_kw in keys or isVirtual:
features_cand.append(1)
seen.add(self.unique_kw)
else:
features_cand.append(0)
if rel_approx:
columns.append('rel_approx')
max_gold_ = ('', 0.)
for gold_key in keys:
dist = 1.-jellyfish.levenshtein_distance(gold_key, self.unique_kw ) / max(len(gold_key), len(self.unique_kw)) # _tL
if max_gold_[1] < dist:
max_gold_ = ( gold_key, dist )
features_cand.append(max_gold_[1])
columns.append('kw')
features_cand.append(self.unique_kw)
columns.append('h')
features_cand.append(self.H)
columns.append('tf')
features_cand.append(self.tf)
columns.append('size')
features_cand.append(self.size)
columns.append('isVirtual')
features_cand.append(int(isVirtual))
for feature_name in features:
for discart_stopword in _stopword:
(f_sum, f_prod, f_sum_prod) = self.get_composed_feature(feature_name, discart_stopword=discart_stopword)
columns.append('%ss_sum_K%s' % ('n' if discart_stopword else '', feature_name) )
features_cand.append(f_sum)
columns.append('%ss_prod_K%s' % ('n' if discart_stopword else '', feature_name) )
features_cand.append(f_prod)
columns.append('%ss_sum_prod_K%s' % ('n' if discart_stopword else '', feature_name) )
features_cand.append(f_sum_prod)
return (features_cand, columns, seen)
def updateH(self, features=None, isVirtual=False):
sum_H = 0.
prod_H = 1.
for (t, term_base) in enumerate(self.terms):
if not term_base.stopword:
sum_H += term_base.H
prod_H *= term_base.H
else:
if STOPWORD_WEIGHT == 'bi':
prob_t1 = 0.
if term_base.G.has_edge(self.terms[t-1].id, self.terms[ t ].id):
prob_t1 = term_base.G[self.terms[t-1].id][self.terms[ t ].id]["TF"] / self.terms[t-1].tf
prob_t2 = 0.
if term_base.G.has_edge(self.terms[ t ].id, self.terms[t+1].id):
prob_t2 = term_base.G[self.terms[ t ].id][self.terms[t+1].id]["TF"] / self.terms[t+1].tf
prob = prob_t1 * prob_t2
prod_H *= (1 + (1 - prob ) )
sum_H -= (1 - prob)
elif STOPWORD_WEIGHT == 'h':
sum_H += term_base.H
prod_H *= term_base.H
elif STOPWORD_WEIGHT == 'none':
pass
tf_used = 1.
if features == None or "KPF" in features:
tf_used = self.tf
if isVirtual:
tf_used = np.mean( [term_obj.tf for term_obj in self.terms] )
self.H = prod_H / ( ( sum_H + 1 ) * tf_used )
def updateH_old(self, features=None, isVirtual=False):
sum_H = 0.
prod_H = 1.
for (t, term_base) in enumerate(self.terms):
if isVirtual and term_base.tf==0:
continue
if term_base.stopword:
prob_t1 = 0.
if term_base.G.has_edge(self.terms[t-1].id, self.terms[ t ].id):
prob_t1 = term_base.G[self.terms[t-1].id][self.terms[ t ].id]["TF"] / self.terms[t-1].tf
prob_t2 = 0.
if term_base.G.has_edge(self.terms[ t ].id, self.terms[t+1].id):
prob_t2 = term_base.G[self.terms[ t ].id][self.terms[t+1].id]["TF"] / self.terms[t+1].tf
prob = prob_t1 * prob_t2
prod_H *= (1 + (1 - prob ) )
sum_H -= (1 - prob)
else:
sum_H += term_base.H
prod_H *= term_base.H
tf_used = 1.
if features == None or "KPF" in features:
tf_used = self.tf
if isVirtual:
tf_used = np.mean( [term_obj.tf for term_obj in self.terms] )
self.H = prod_H / ( ( sum_H + 1 ) * tf_used )
class single_word(object):
def __init__(self, unique, idx, graph):
self.unique_term = unique
self.id = idx
self.tf = 0.
self.WFreq = 0.0
self.WCase = 0.0
self.tf_a = 0.
self.tf_n = 0.
self.WRel = 1.0
self.PL = 0.
self.PR = 0.
self.occurs = {}
self.WPos = 1.0
self.WSpread = 0.0
self.H = 0.0
self.stopword = False
self.G = graph
self.pagerank = 1.
def updateH(self, maxTF, avgTF, stdTF, number_of_sentences, features=None):
"""if features == None or "WRel" in features:
self.PL = self.WDL / maxTF
self.PR = self.WDR / maxTF
self.WRel = ( (0.5 + (self.PWL * (self.tf / maxTF) + self.PL)) + (0.5 + (self.PWR * (self.tf / maxTF) + self.PR)) )"""
if features == None or "WRel" in features:
self.PL = self.WDL / maxTF
self.PR = self.WDR / maxTF
self.WRel = ( (0.5 + (self.PWL * (self.tf / maxTF))) + (0.5 + (self.PWR * (self.tf / maxTF))) )
if features == None or "WFreq" in features:
self.WFreq = self.tf / (avgTF + stdTF)
if features == None or "WSpread" in features:
self.WSpread = len(self.occurs) / number_of_sentences
if features == None or "WCase" in features:
self.WCase = max(self.tf_a, self.tf_n) / (1. + math.log(self.tf))
if features == None or "WPos" in features:
self.WPos = math.log( math.log( 3. + np.median(list(self.occurs.keys())) ) )
self.H = (self.WPos * self.WRel) / (self.WCase + (self.WFreq / self.WRel) + (self.WSpread / self.WRel))
@property
def WDR(self):
return len( self.G.out_edges(self.id) )
@property
def WIR(self):
return sum( [ d['TF'] for (u,v,d) in self.G.out_edges(self.id, data=True) ] )
@property
def PWR(self):
wir = self.WIR
if wir == 0:
return 0
return self.WDR / wir
@property
def WDL(self):
return len( self.G.in_edges(self.id) )
@property
def WIL(self):
return sum( [ d['TF'] for (u,v,d) in self.G.in_edges(self.id, data=True) ] )
@property
def PWL(self):
wil = self.WIL
if wil == 0:
return 0
return self.WDL / wil
def addOccur(self, tag, sent_id, pos_sent, pos_text):
if sent_id not in self.occurs:
self.occurs[sent_id] = []
self.occurs[sent_id].append( (pos_sent, pos_text) )
self.tf += 1.
if tag == "a":
self.tf_a += 1.
if tag == "n":
self.tf_n += 1.