-
Notifications
You must be signed in to change notification settings - Fork 51
/
model_zoo.py
executable file
·616 lines (453 loc) · 19.9 KB
/
model_zoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python3
import torch
from ..registry import register_model
from ..wrappers.pytorch import PytorchModel, PyContrastPytorchModel, ClipPytorchModel, \
ViTPytorchModel, EfficientNetPytorchModel, SwagPytorchModel
_PYTORCH_IMAGE_MODELS = "rwightman/pytorch-image-models"
_EFFICIENTNET_MODELS = "rwightman/gen-efficientnet-pytorch"
def model_pytorch(model_name, *args):
import torchvision.models as zoomodels
model = zoomodels.__dict__[model_name](pretrained=True)
model = torch.nn.DataParallel(model)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_trained_on_SIN(model_name, *args):
from .shapenet import texture_shape_models as tsm
model = tsm.load_model(model_name)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_trained_on_SIN_and_IN(model_name, *args):
from .shapenet import texture_shape_models as tsm
model = tsm.load_model(model_name)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN(model_name, *args):
from .shapenet import texture_shape_models as tsm
model = tsm.load_model(model_name)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def bagnet9(model_name, *args):
from .bagnets.pytorchnet import bagnet9
model = bagnet9(pretrained=True)
model = torch.nn.DataParallel(model)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def bagnet17(model_name, *args):
from .bagnets.pytorchnet import bagnet17
model = bagnet17(pretrained=True)
model = torch.nn.DataParallel(model)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def bagnet33(model_name, *args):
from .bagnets.pytorchnet import bagnet33
model = bagnet33(pretrained=True)
model = torch.nn.DataParallel(model)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def simclr_resnet50x1_supervised_baseline(model_name, *args):
from .simclr import simclr_resnet50x1_supervised_baseline
model = simclr_resnet50x1_supervised_baseline(pretrained=True, use_data_parallel=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def simclr_resnet50x4_supervised_baseline(model_name, *args):
from .simclr import simclr_resnet50x4_supervised_baseline
model = simclr_resnet50x4_supervised_baseline(pretrained=True, use_data_parallel=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def simclr_resnet50x1(model_name, *args):
from .simclr import simclr_resnet50x1
model = simclr_resnet50x1(pretrained=True, use_data_parallel=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def simclr_resnet50x2(model_name, *args):
from .simclr import simclr_resnet50x2
model = simclr_resnet50x2(pretrained=True, use_data_parallel=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def simclr_resnet50x4(model_name, *args):
from .simclr import simclr_resnet50x4
model = simclr_resnet50x4(pretrained=True,
use_data_parallel=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def InsDis(model_name, *args):
from .pycontrast.pycontrast_resnet50 import InsDis
model, classifier = InsDis(pretrained=True)
return PyContrastPytorchModel(*(model, classifier), model_name, *args)
@register_model("pytorch")
def MoCo(model_name, *args):
from .pycontrast.pycontrast_resnet50 import MoCo
model, classifier = MoCo(pretrained=True)
return PyContrastPytorchModel(*(model, classifier), model_name, *args)
@register_model("pytorch")
def MoCoV2(model_name, *args):
from .pycontrast.pycontrast_resnet50 import MoCoV2
model, classifier = MoCoV2(pretrained=True)
return PyContrastPytorchModel(*(model, classifier), model_name, *args)
@register_model("pytorch")
def PIRL(model_name, *args):
from .pycontrast.pycontrast_resnet50 import PIRL
model, classifier = PIRL(pretrained=True)
return PyContrastPytorchModel(*(model, classifier), model_name, *args)
@register_model("pytorch")
def InfoMin(model_name, *args):
from .pycontrast.pycontrast_resnet50 import InfoMin
model, classifier = InfoMin(pretrained=True)
return PyContrastPytorchModel(*(model, classifier), model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0
model = resnet50_l2_eps0()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_01(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_01
model = resnet50_l2_eps0_01()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_03(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_03
model = resnet50_l2_eps0_03()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_05(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_05
model = resnet50_l2_eps0_05()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_1(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_1
model = resnet50_l2_eps0_1()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_25(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_25
model = resnet50_l2_eps0_25()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps0_5(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps0_5
model = resnet50_l2_eps0_5()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps1(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps1
model = resnet50_l2_eps1()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps3(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps3
model = resnet50_l2_eps3()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_l2_eps5(model_name, *args):
from .adversarially_robust.robust_models import resnet50_l2_eps5
model = resnet50_l2_eps5()
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def efficientnet_b0(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def efficientnet_es(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def efficientnet_b0_noisy_student(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"tf_efficientnet_b0_ns",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def efficientnet_l2_noisy_student_475(model_name, *args):
model = torch.hub.load(_EFFICIENTNET_MODELS,
"tf_efficientnet_l2_ns_475",
pretrained=True)
return EfficientNetPytorchModel(model, model_name, *args)
@register_model("pytorch")
def transformer_B16_IN21K(model_name, *args):
from pytorch_pretrained_vit import ViT
model = ViT('B_16_imagenet1k', pretrained=True)
return ViTPytorchModel(model, model_name, *args)
@register_model("pytorch")
def transformer_B32_IN21K(model_name, *args):
from pytorch_pretrained_vit import ViT
model = ViT('B_32_imagenet1k', pretrained=True)
return ViTPytorchModel(model, model_name, *args)
@register_model("pytorch")
def transformer_L16_IN21K(model_name, *args):
from pytorch_pretrained_vit import ViT
model = ViT('L_16_imagenet1k', pretrained=True)
return ViTPytorchModel(model, model_name, *args)
@register_model("pytorch")
def transformer_L32_IN21K(model_name, *args):
from pytorch_pretrained_vit import ViT
model = ViT('L_32_imagenet1k', pretrained=True)
return ViTPytorchModel(model, model_name, *args)
@register_model("pytorch")
def vit_small_patch16_224(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
img_size = (224, 224)
return ViTPytorchModel(model, model_name, img_size, *args)
@register_model("pytorch")
def vit_base_patch16_224(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
img_size = (224, 224)
return ViTPytorchModel(model, model_name, img_size, *args)
@register_model("pytorch")
def vit_large_patch16_224(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
img_size = (224, 224)
return ViTPytorchModel(model, model_name, img_size, *args)
@register_model("pytorch")
def cspresnet50(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def cspresnext50(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def cspdarknet53(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def darknet53(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn68(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn68b(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn92(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn98(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn131(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def dpn107(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w18_small(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w18_small(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w18_small_v2(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w18(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w30(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w40(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w44(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w48(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def hrnet_w64(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def selecsls42(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def selecsls84(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def selecsls42b(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def selecsls60(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def selecsls60b(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
model_name,
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def clip(model_name, *args):
import clip
model, _ = clip.load("ViT-B/32")
return ClipPytorchModel(model, model_name, *args)
@register_model("pytorch")
def clipRN50(model_name, *args):
import clip
model, _ = clip.load("RN50")
return ClipPytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_swsl(model_name, *args):
model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models',
'resnet50_swsl')
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def ResNeXt101_32x16d_swsl(model_name, *args):
model = torch.hub.load('facebookresearch/semi-supervised-ImageNet1K-models',
'resnext101_32x16d_swsl')
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_50x1(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_50x1_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_50x3(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_50x3_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_101x1(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_101x1_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_101x3(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_101x3_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_152x2(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_152x2_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def BiTM_resnetv2_152x4(model_name, *args):
model = torch.hub.load(_PYTORCH_IMAGE_MODELS,
"resnetv2_152x4_bitm",
pretrained=True)
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_clip_hard_labels(model_name, *args):
import torchvision.models as zoomodels
model = zoomodels.__dict__["resnet50"](pretrained=False)
model = torch.nn.DataParallel(model)
checkpoint = torch.hub.load_state_dict_from_url("https://github.com/bethgelab/model-vs-human/releases/download/v0.3"
"/ResNet50_clip_hard_labels.pth",map_location='cpu')
model.load_state_dict(checkpoint["state_dict"])
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def resnet50_clip_soft_labels(model_name, *args):
import torchvision.models as zoomodels
model = zoomodels.__dict__["resnet50"](pretrained=False)
model = torch.nn.DataParallel(model)
checkpoint = torch.hub.load_state_dict_from_url("https://github.com/bethgelab/model-vs-human/releases/download/v0.3"
"/ResNet50_clip_soft_labels.pth", map_location='cpu')
model.load_state_dict(checkpoint["state_dict"])
return PytorchModel(model, model_name, *args)
@register_model("pytorch")
def swag_regnety_16gf_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="regnety_16gf_in1k")
return SwagPytorchModel(model, model_name, input_size=384, *args)
@register_model("pytorch")
def swag_regnety_32gf_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="regnety_32gf_in1k")
return SwagPytorchModel(model, model_name, input_size=384, *args)
@register_model("pytorch")
def swag_regnety_128gf_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="regnety_128gf_in1k")
return SwagPytorchModel(model, model_name, input_size=384, *args)
@register_model("pytorch")
def swag_vit_b16_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="vit_b16_in1k")
return SwagPytorchModel(model, model_name, input_size=384, *args)
@register_model("pytorch")
def swag_vit_l16_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="vit_l16_in1k")
return SwagPytorchModel(model, model_name, input_size=512, *args)
@register_model("pytorch")
def swag_vit_h14_in1k(model_name, *args):
model = torch.hub.load("facebookresearch/swag", model="vit_h14_in1k")
return SwagPytorchModel(model, model_name, input_size=518, *args)