From 0fc714c7a2086f8c85307e5ae3294b30f09dd9c2 Mon Sep 17 00:00:00 2001 From: Yunzhi Shi Date: Mon, 22 Jan 2018 13:55:44 -0600 Subject: [PATCH] GEO 384S HW0. --- book/geo384s/hw0/Mnonlocal.c | 62 +++++ book/geo384s/hw0/SConstruct | 11 + book/geo384s/hw0/channel/SConstruct | 28 ++ book/geo384s/hw0/channel2/SConstruct | 53 ++++ book/geo384s/hw0/local/SConstruct | 57 +++++ book/geo384s/hw0/mona/SConstruct | 19 ++ book/geo384s/hw0/paper.tex | 370 +++++++++++++++++++++++++++ book/geo384s/hw0/school.bib | 37 +++ 8 files changed, 637 insertions(+) create mode 100644 book/geo384s/hw0/Mnonlocal.c create mode 100644 book/geo384s/hw0/SConstruct create mode 100644 book/geo384s/hw0/channel/SConstruct create mode 100644 book/geo384s/hw0/channel2/SConstruct create mode 100644 book/geo384s/hw0/local/SConstruct create mode 100644 book/geo384s/hw0/mona/SConstruct create mode 100644 book/geo384s/hw0/paper.tex create mode 100644 book/geo384s/hw0/school.bib diff --git a/book/geo384s/hw0/Mnonlocal.c b/book/geo384s/hw0/Mnonlocal.c new file mode 100644 index 0000000000..8145eba16c --- /dev/null +++ b/book/geo384s/hw0/Mnonlocal.c @@ -0,0 +1,62 @@ +/* Non-local smoothing. */ +#include + +int main (int argc, char *argv[]) +{ + int n1,n2, i1,i2, is, ns; + float *trace, *trace2, ax, ay, t; + sf_file inp, out; + + /* initialize */ + sf_init(argc,argv); + + /* set input and output files */ + inp = sf_input("in"); + out = sf_output("out"); + + /* get input dimensions */ + if (!sf_histint(inp,"n1",&n1)) + sf_error("No n1= in input"); + n2 = sf_leftsize(inp,1); + + /* get command-line parameters */ + if (!sf_getint("ns",&ns)) sf_error("Need ns="); + /* spray radius */ + + if (!sf_getfloat("ax",&ax)) sf_error("Need ax="); + /* exponential weight for the coordinate distance */ + + trace = sf_floatalloc(n1); + trace2 = sf_floatalloc(n1); + + /* loop over traces */ + for (i2=0; i2 < n2; i2++) { + /* read input */ + sf_floatread(trace,n1,inp); + + /* loop over samples */ + for (i1=0; i1 < n1; i1++) { + t = 0.; + + /* accumulate shifts */ + for (is=-ns; is <= ns; is++) { + if (i1+is >= 0 && i1+is < n1) { + + /* !!!MODIFY THE NEXT LINE!!! */ + t += trace[i1+is]*expf(-ax*is*is); + } + } + + trace2[i1] = t; + } + + /* write output */ + sf_floatwrite(trace2,n1,out); + } + + /* clean up */ + sf_fileclose(inp); + exit (0); +} + + diff --git a/book/geo384s/hw0/SConstruct b/book/geo384s/hw0/SConstruct new file mode 100644 index 0000000000..15005f126c --- /dev/null +++ b/book/geo384s/hw0/SConstruct @@ -0,0 +1,11 @@ +from rsf.tex import * + +End(use='hyperref,listings',options='reproduce', + color='horizon smoothed mona smoothed2', + include=r''' +\newlength{\boxwidth} +\setlength{\boxwidth}{\textwidth} +\addtolength{\boxwidth}{-50pt} +\setlength{\fboxsep}{10pt} +\newcommand{\answer}[1]{\noindent\fbox{\parbox{\boxwidth}{\textbf{Answer:} #1}}} + ''') \ No newline at end of file diff --git a/book/geo384s/hw0/channel/SConstruct b/book/geo384s/hw0/channel/SConstruct new file mode 100644 index 0000000000..b5edbfbd5f --- /dev/null +++ b/book/geo384s/hw0/channel/SConstruct @@ -0,0 +1,28 @@ +from rsf.proj import * + +# Download data +Fetch('horizon.asc','hall') + +# Convert format +Flow('horizon','horizon.asc', + ''' + echo in=$SOURCE data_format=ascii_float n1=3 n2=57036 | + dd form=native | window n1=1 f1=-1 | + put + n1=196 o1=33.139 d1=0.01 label1=y unit1=km + n2=291 o2=35.031 d2=0.01 label2=x unit2=km + ''') + +# Triangle smoothing +Flow('smoothed','horizon','smooth rect1=20 rect2=20') + +# Display results +for horizon in ('horizon','smoothed'): + # --- CHANGE BELOW --- + Plot(horizon,'grey color=j bias=65 yreverse=n wanttitle=n') + edge = 'edge-'+horizon + Flow(edge,horizon,'canny max=98 | dd type=float') + Plot(edge,'grey allpos=y yreverse=n wanttitle=n') + Result(horizon,[horizon,edge],'SideBySideIso') + +End() diff --git a/book/geo384s/hw0/channel2/SConstruct b/book/geo384s/hw0/channel2/SConstruct new file mode 100644 index 0000000000..abbf0ff665 --- /dev/null +++ b/book/geo384s/hw0/channel2/SConstruct @@ -0,0 +1,53 @@ +from rsf.proj import * + +# Download data +Fetch('horizon.asc','hall') + +# Convert format +Flow('horizon2','horizon.asc', + ''' + echo in=$SOURCE data_format=ascii_float n1=3 n2=57036 | + dd form=native | window n1=1 f1=-1 | + add add=-65 | put + n1=196 o1=33.139 d1=0.01 label1=y unit1=km + n2=291 o2=35.031 d2=0.01 label2=x unit2=km + ''',stdin=0) +Result('horizon2','grey yreverse=n color=j title=Input') + +# Spray +Flow('spray','horizon2', + ''' + spray axis=3 n=21 o=-0.1 d=0.01 | + spray axis=4 n=21 o=-0.1 d=0.01 + ''') + +# Shift +Flow('shift1','spray','window n1=1 | math output=x2') +Flow('shift2','spray','window n2=1 | math output=x3') + +Flow('local','spray shift1 shift2', + ''' + datstretch datum=${SOURCES[1]} | transp | + datstretch datum=${SOURCES[2]} | transp + ''') +Plot('local','window j3=4 j4=4 | grey color=j',view=1) + +# --- CHANGE BELOW --- +# try "exp(-0.1*(input-loc)^2-200*(x3^2+x4^2))" +Flow('simil','spray local', + ''' + math loc=${SOURCES[1]} output=1 + ''') + +Flow('norm','simil', + 'stack axis=4 | stack axis=3') + +Flow('smoothed2','local simil norm', + ''' + add mode=p ${SOURCES[1]} | + stack axis=4 | stack axis=3 | + add mode=d ${SOURCES[2]} + ''') +Result('smoothed2','grey yreverse=n color=j title=Output') + +End() diff --git a/book/geo384s/hw0/local/SConstruct b/book/geo384s/hw0/local/SConstruct new file mode 100644 index 0000000000..f017dbb3f3 --- /dev/null +++ b/book/geo384s/hw0/local/SConstruct @@ -0,0 +1,57 @@ +from rsf.proj import * + +# Generate synthetic data +Flow('step',None, + ''' + spike nsp=3 n1=101 k1=26,51,76 mag=-1,2,-1 d1=1 label1= unit1= | + causint | + noise seed=62009 var=0.001 + ''') +Result('step','dots') + +# Conventional smoothing +Flow('smooth','step','smooth rect1=10') +Result('smooth','dots') + +# Spray by repeating the input +Flow('spray','step','spray axis=2 d=1 o=-10 n=21') +Result('spray','dots') + +# Shift each trace +Flow('shift','spray','window n1=1 | math output=x1') +Flow('local','spray shift', + 'datstretch datum=${SOURCES[1]}') +Result('local','dots') + +# Triangle weight +# --- CHANGE BELOW --- +Flow('triangle','local','math output="1-abs(x2)/10" ') +Flow('tnorm','triangle','stack') +Result('triangle','dots gaineach=n title="Triangle Weight" ') + +# Triangle smoothing by weighting and stacking +Flow('smooth2','local triangle tnorm', + ''' + add mode=p ${SOURCES[1]} | + stack | + add mode=d ${SOURCES[2]} + ''') +Result('smooth2','dots title="Triangle Smoothing 2" title=') + +# Nonlocal weight +Flow('similarity','spray local triangle', + '''math loc=${SOURCES[1]} tri=${SOURCES[2]} + output="tri*exp(-10*(input-loc)^2)"''') +Result('similarity','dots gaineach=n title="Similarity Weight" ') + +# Multiply two weights together +Flow('nlnorm','similarity','stack') +Flow('nlsmooth','local similarity nlnorm', + ''' + add mode=p ${SOURCES[1]} | + stack | + add mode=d ${SOURCES[2]} + ''') +Result('nlsmooth','dots') + +End() diff --git a/book/geo384s/hw0/mona/SConstruct b/book/geo384s/hw0/mona/SConstruct new file mode 100644 index 0000000000..428abd5b86 --- /dev/null +++ b/book/geo384s/hw0/mona/SConstruct @@ -0,0 +1,19 @@ +from rsf.proj import * + +# Download data +Fetch('mona.img','imgs') + +# Convert to standard format +Flow('mona','mona.img', + ''' + echo n1=512 n2=513 in=$SOURCE data_format=native_uchar | + dd type=float + ''',stdin=0) + +Result('mona', + ''' + grey transp=n allpos=y title="Mona Lisa" + color=b screenratio=1 wantaxis=n + ''') + +End() diff --git a/book/geo384s/hw0/paper.tex b/book/geo384s/hw0/paper.tex new file mode 100644 index 0000000000..30e4e89ea0 --- /dev/null +++ b/book/geo384s/hw0/paper.tex @@ -0,0 +1,370 @@ +\author{Maurice the Aye-Aye} +%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\title{GEO 365N/384S Seismic Data Processing \\ Computational Assignment 0} + +\maketitle + +\begin{abstract} + In this tutorial, you will go through different steps required for writing a research paper with reproducible examples with \texttt{Madagascar}. In particular, you will + \begin{enumerate} + \item identify a research problem, + \item suggest a solution and test it, + \item write a report about your work. + \end{enumerate} +\end{abstract} + +\section{Prerequisites} + +Completing this tutorial requires +\begin{itemize} +\item \texttt{Madagascar} software environment available from \\ +\url{http://www.ahay.org} +\item \LaTeX\ environment with \texttt{SEG}\TeX available from \\ +\url{http://www.ahay.org/wiki/SEGTeX} +\end{itemize} +To do the assignment on your personal computer, you need to install +the required environments. An Internet connection is required for +access to the data repository. + +To setup the Madagascar environment in the JGB 3.216B computer lab, run the following command: +\begin{verbatim} +$ module load madagascar-devel +\end{verbatim} +You can put this command in your \verb+$HOME/.cshrc+ file to run them automatically at login time. \footnote{All commands above assume you are using the default \texttt{cshell} environment; certain modifications apply to different shell environments.} To setup the \LaTeX\ environment, run the following commands: +\begin{verbatim} +$ cd; git clone https://github.com/SEGTeX/texmf.git +$ cd texmf; texhash +\end{verbatim} +You only need to do it once. + +The tutorial itself is available from the \texttt{Madagascar} repository +by running +\begin{verbatim} +$ svn co https://github.com/ahay/src/trunk/book/geo384s/hw0 +\end{verbatim} + +\section{Generating this document} + +At any point of doing this computational assignment, you can +regenerate this document and display it on your screen. + +\begin{enumerate} +\item Change directory to \texttt{hw0}: +\begin{verbatim} +$ cd hw0 +\end{verbatim} +\item Run +\begin{verbatim} +$ sftour scons lock +$ scons read & +\end{verbatim} +\end{enumerate} + +As the first step, open \texttt{hw0/paper.tex} file in your favorite +editor (\texttt{vi}, \texttt{emacs}, \texttt{nano}, \texttt{gedit}, etc.) and edit the first line to enter your name. Then +run \texttt{scons read} again. + +To remove (clean) previously generated files, run \texttt{\$ scons -c}. You can then rerun the program from scratch. + + +\section{Problem definition} +\inputdir{channel} + +\plot{horizon}{width=\textwidth}{Depth slice from 3-D seismic (left) and output of edge detection (right).} + +The left plot in Figure~\ref{fig:horizon} shows a depth slice from a 3-D +seismic volume\footnote{Courtesy of Matt Hall (ConocoPhillips Canada +Ltd.)}. You notice a channel structure and decide to extract it using +and edge detection algorithm from the image processing literature +\cite[]{canny}. In a nutshell, Canny's edge detector picks areas of +high gradient that seem to be aligned along an edge. The extracted +edges are shown in the right plot of Figure~\ref{fig:horizon}. The initial +result is not too clear, because it is affected by random +fluctuations in seismic amplitudes. The goal of your research project +is to achieve a better result in automatic channel extraction. + +\begin{enumerate} +\item Change directory to the project directory +\begin{verbatim} +$ cd channel +\end{verbatim} +\item Run +\begin{verbatim} +$ scons horizon.view +\end{verbatim} +A number of commands will appear in the shell followed by Figure~\ref{fig:horizon} appearing on your screen. +\item To understand the commands, examine the script that generated them by opening the \texttt{SConstruct} file in a text editor. Notice that, instead of shell commands, the script contains rules. +\begin{itemize} +\item The first rule, \texttt{Fetch}, allows the script to download the input data file \texttt{horizon.asc} from the data server. +\item Other rules have the form \texttt{Flow(target,source,command)} for generating data files or \texttt{Plot} and \texttt{Result} for +generating picture files. +\item \texttt{Fetch}, \texttt{Flow}, \texttt{Plot}, and \texttt{Result} are defined in \texttt{Madagascar}'s \texttt{rsf.proj} package, which extends the functionality of \href{http://www.scons.org}{SCons} +\cite[]{icassp}. +\end{itemize} +\item To better understand how rules translate into commands, run +\begin{verbatim} +$ scons -c horizon.rsf +\end{verbatim} +The \texttt{-c} flag tells scons to remove the \texttt{horizon.rsf} file and all its dependencies. +\item Next, run +\begin{verbatim} +$ scons -n horizon.rsf +\end{verbatim} +The \texttt{-n} flag tells scons not to run the command but simply to display it on the screen. Identify the lines in the \texttt{SConstruct} file that generate the output you see on the screen. +\item Run +\begin{verbatim} +$ scons horizon.rsf +\end{verbatim} +Examine the file \texttt{horizon.rsf} both by opening it in a text editor and by running +\begin{verbatim} +$ sfin horizon.rsf +\end{verbatim} +How many different \texttt{Madagascar} modules were used to create this file? What are the file dimensions? Where is the actual data stored? + +\answer{ +% Insert your answer here +} + +\item Run +\begin{verbatim} +$ scons smoothed.rsf +\end{verbatim} +Notice that the \texttt{horizon.rsf} file is not being rebuilt. +\item What does the \texttt{sfsmooth} module do? Find it out by running +\begin{verbatim} +$ sfsmooth +\end{verbatim} +without arguments. Has \texttt{sfsmooth} been used in any other \texttt{Madagascar} examples? + +\answer{ +% Insert your answer here +} + +\item What other \texttt{Madagascar} modules perform smoothing? To find out, run +\begin{verbatim} +$ sfdoc -k smooth +\end{verbatim} +\item Notice that Figure~\ref{fig:horizon} does not make a very good use of the color scale. To improve the scale, find the mean value of the data by running +\begin{verbatim} +$ sfattr < horizon.rsf +\end{verbatim} +and insert it as a new value for the \texttt{bias=} parameter in the +\texttt{SConstruct} file. Does smoothing by \texttt{sfsmooth} change +the mean value? + +\answer{ +% Insert your answer here +} + +\item Save the \texttt{SConstruct} file and run +\begin{verbatim} +$ scons view +\end{verbatim} +to view improved images. Notice that \texttt{horizon.rsf} and \texttt{smoothed.rsf} files are not being rebuilt. SCons is smart enough to know that only the +part affected by your changes needs to be updated. +\end{enumerate} + +As shown in Figure~\ref{fig:smoothed}, smoothing removes random +amplitude fluctuations but at the same time broadens the channel and thus +makes the channel edge detection unreliable. In the next part of this +tutorial, you will try to find a better solution by examining a simple +one-dimensional synthetic example. + +\plot{smoothed}{width=\textwidth}{Depth slice from Figure~\ref{fig:horizon} after smoothing (left) and output of edge detection (right).} + +\lstset{basicstyle=\small\ttfamily,breaklines=true} +\lstset{ + keywordstyle=\color{magenta}, + stringstyle=\color{blue}, + commentstyle=\color{cyan}, + numberstyle=\color{red}, +} +\lstset{language=python,numbers=left,numberstyle=\tiny,showstringspaces=false} +\lstinputlisting[frame=single, title=channel/SConstruct]{channel/SConstruct} + +\section{1-D synthetic} +\inputdir{local} + +\multiplot{2}{step,smooth}{width=0.45\textwidth}{(a) 1-D synthetic to test edge-preserving smoothing. (b) Output of conventional triangle smoothing.} + +To better understand the effect of smoothing, you decide to create a +one-dimensional synthetic example shown in Figure~\ref{fig:step}. The +synthetic contains both sharp edges and random noise. The output of +conventional triangle smoothing is shown in +Figure~\ref{fig:smooth}. We see an effect similar to the one in the +real data example: random noise gets removed by smoothing at the +expense of blurring the edges. Can you do better? + +\multiplot{2}{spray,local}{width=0.45\textwidth}{(a) Input synthetic trace duplicated multiple times. (b) Duplicated traces shifted so that each data +sample gets surrounded by its neighbors. The original trace is in the middle.} + +To better understand what is happening in the process of smoothing, +let us convert 1-D signal into a 2-D signal by first replicating the +trace several times and then shifting the replicated traces with +respect to the original trace (Figure~\ref{fig:spray,local}). This +creates a 2-D dataset, where each sample on the original trace is +surrounded by samples from neighboring traces. + +Every local filtering operation can be understood as stacking traces +from Figure~\ref{fig:local} multiplied by weights that correspond to +the filter coefficients. + +\begin{enumerate} +\item Change directory to the project directory +\begin{verbatim} +$ cd ../local +\end{verbatim} +\item Verify the claim above by running +\begin{verbatim} +$ scons smooth.view smooth2.view +\end{verbatim} +Open the \texttt{SConstruct} file in a text editor to verify that the first image is computed by \texttt{sfsmooth} and the second +image is computed by applying triangle weights and stacking. To compare the two images by flipping between them, run +\begin{verbatim} +$ sfpen Fig/smooth.vpl Fig/smooth2.vpl +\end{verbatim} +\item Edit \texttt{SConstruct} to change the weight from triangle +\begin{equation} +\label{eq:triangle} +W_T(x) = 1-\frac{|x|}{x_0} +\end{equation} +to Gaussian +\begin{equation} +\label{eq:gaussian} +W_G(x) = \exp{\left(-\alpha\,\frac{|x|^2}{x_0^2}\right)} +\end{equation} +Repeat the previous computation. Does the result change? What is a good value for $\alpha$? + +\answer{ +% Insert your answer here +} + +\item Thinking about this problem, you invent an idea\footnote{Actually, you reinvent the idea of \emph{bilateral} or \emph{non-local} filters +\cite[]{tomasi,gilboa}.}. Why not apply non-linear filter weights that would discriminate between points not only based on their distance +from the center point but also on the difference in function values +between the points. That is, instead of filtering by +\begin{equation} +\label{eq:local} +g(x) = \int f(y)\,W(x-y)\,dy\;, +\end{equation} +where $f(x)$ is input, $g(x)$ is output, and $W(x)$ is a linear weight, you decide to filter by +\begin{equation} +\label{eq:nonlocal} +g(x) = \int f(y)\,\hat{W}\left(x-y,f(x)-f(y)\right)\,dy\;, +\end{equation} +where and $\hat{W}(x,z)$ is a non-linear weight. Compare the two weights by running +\begin{verbatim} +$ scons triangle.view similarity.view +\end{verbatim} +The results should look similar to Figure~\ref{fig:triangle,similarity}. +\item The final output is Figure~\ref{fig:nlsmooth}. By examining \texttt{SConstruct}, find how to reproduce this figure. + +\clearpage + +\item \textbf{EXTRA CREDIT} If you are familiar with programming in C, add 1-D non-local filtering as a new \texttt{Madagascar} module \texttt{sfnonloc}. Ask the instructor for further instructions. +\end{enumerate} + +\multiplot{2}{triangle,similarity}{width=0.45\textwidth}{(a) Linear and stationary triangle weights. (b) Non-linear and non-stationary weights reflecting both distance +between data points and similarity in data values.} + +\sideplot{nlsmooth}{width=\textwidth}{Output of non-local smoothing} + +Figure~\ref{fig:nlsmooth} shows that non-linear filtering can eliminate random noise while preserving the edges. The problem is solved! Now let us apply the result to our original problem. + + +\lstset{language=c,numbers=left,numberstyle=\tiny,showstringspaces=false} +\lstinputlisting[frame=single, title=Mnonlocal.c]{Mnonlocal.c} + +\section{Solution} +\inputdir{channel2} + +\begin{enumerate} +\item Change directory to the project directory +\begin{verbatim} +$ cd ../channel2 +\end{verbatim} +\item By now, you should know what to do next. +\item Two-dimensional shifts generate a four-dimensional volume. Verify it by running +\begin{verbatim} +$ scons local.rsf +\end{verbatim} +and +\begin{verbatim} +$ sfin local.rsf +\end{verbatim} +View a movie of different shifts by running +\begin{verbatim} +$ scons local.vpl +\end{verbatim} +\item Modify the filter weights by editing \texttt{SConstruct} in a text editor. +Observe your final result by running +\begin{verbatim} +$ scons smoothed2.view +\end{verbatim} +\item The file $\texttt{norm.rsf}$ contains the non-linear weights stacked over different shifts. Add a \texttt{Result} statement to \texttt{SConstruct} that would display +the contents of $\texttt{norm.rsf}$ in a figure. Do you notice anything interesting? + +\answer{ +% Insert your answer here +} + +\item Apply the Canny edge detection to your final result and display it in a figure. +\item \textbf{EXTRA CREDIT} Change directory to \verb#../mona# and apply your method to the image of Mona Lisa. Can you extract her smile? +\end{enumerate} + +\lstset{language=python,numbers=left,numberstyle=\tiny,showstringspaces=false} +\lstinputlisting[frame=single, title=channel2/SConstruct]{channel2/SConstruct} + +\sideplot{smoothed2}{width=0.75\textwidth}{Your final result.} + +\inputdir{mona} +\sideplot{mona}{width=0.75\textwidth}{Can you apply your algorithm to Mona Lisa?} + +\lstset{language=python,numbers=left,numberstyle=\tiny,showstringspaces=false} +\lstinputlisting[frame=single, title=mona/SConstruct]{mona/SConstruct} + +\section{Writing a report} + +\begin{enumerate} +\item Change directory to the parent directory +\begin{verbatim} +$ cd .. +\end{verbatim} +This should be the directory that contains \texttt{paper.tex}. +\item Run +\begin{verbatim} +$ sftour scons lock +\end{verbatim} +The \texttt{sftour} command visits all subdirectories and runs \texttt{scons lock}, which copies result files to a different location so that they do not get modified until further notice. +\item You can also run +\begin{verbatim} +$ sftour scons -c +\end{verbatim} +to clean intermediate results. +\item Edit the file \texttt{paper.tex} to include your additional results. If you have not used \LaTeX\ before, no worries. It is a descriptive language. Study the file, and it should become evident by example how to include figures. +\item Run +\begin{verbatim} +$ scons paper.pdf +\end{verbatim} +and open \texttt{paper.pdf} with a PDF viewing program such as \textbf{Acrobat Reader}. +\item Want to submit your paper to \emph{Geophysics}? Edit \texttt{SConstruct} in the +paper directory to add \texttt{options=manuscript} to the \texttt{End} statement. Then run +\begin{verbatim} +$ scons paper.pdf +\end{verbatim} +again and display the result. +\item If you have \LaTeX2HTML installed, you can also generate an HTML version of your paper by running +\begin{verbatim} +$ scons html +\end{verbatim} +and opening \verb#paper_html/index.html# in a web browser. +\end{enumerate} + +%\lstset{language=python,numbers=left,numberstyle=\tiny,showstringspaces=false} +%\lstinputlisting[frame=single]{SConstruct} + +\bibliographystyle{seg} +\bibliography{school} + + + diff --git a/book/geo384s/hw0/school.bib b/book/geo384s/hw0/school.bib new file mode 100644 index 0000000000..8544d31141 --- /dev/null +++ b/book/geo384s/hw0/school.bib @@ -0,0 +1,37 @@ +@Article{canny, + author = {J[] Canny}, + title = {A Computational Approach To Edge Detection}, + journal = {IEEE Trans. Pattern Analysis and Machine Intelligence}, + year = 1986, + volume = 8, + pages = {679-714} +} + +@inproceedings{tomasi, + author = {C[] Tomasi and R[] Manduchi}, + title = {Bilateral filtering for gray and color images}, + booktitle = {Proceedings of IEEE International Conference on Computer Vision}, + year = {1998}, + publisher = {IEEE}, + pages = {836-846} +} + +@Article{gilboa, + author = {G[uy] Gilboa and S[tanley] Osher}, + title = {Nonlocal operators with applications to image processing}, + journal = {Multiscale Model \& Simulation }, + pages = {1005-1028}, + volume = 7, + year = 2008 +} + +@inproceedings{icassp, + author = {S[] Fomel and G[] Hennenfent}, + booktitle = {32nd International Conference on Acoustics, + Speech, and Signal Processing (ICASSP)}, + pages = {1257-1260}, + publisher = {IEEE}, + title = {Reproducible computational + experiments using {SCons}}, + year = 2007 +} \ No newline at end of file