-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpsegment-test.py
395 lines (348 loc) · 18.4 KB
/
psegment-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from __future__ import print_function
from __future__ import division
import os, sys, argparse
import numpy as np
import pandas as pd
from scipy.signal import medfilt
from builtins import range
from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score
import mir_eval
import librosa, librosa.display
import matplotlib.pyplot as plt
import tensorflow as tf
import keras
from keras.models import Sequential, Model
from keras.layers import Activation, Dense, Flatten, Input, Reshape, Dropout, Permute
from keras.layers.convolutional import Conv2D
from keras.layers.normalization import BatchNormalization
from keras.layers.recurrent import GRU
from keras.layers.pooling import MaxPooling2D, GlobalAveragePooling2D
from keras.layers.merge import Concatenate
from keras import backend as K
from keras.backend.tensorflow_backend import set_session
os.environ["CUDA_VISIBLE_DEVICES"]="0" # the number of the GPU
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3 # percentage to be used
set_session(tf.Session(config=config))
from kapre.time_frequency import Melspectrogram
from global_config import *
reg_w = 1e-4
batch_size = 1
def data_gen(audio_data, n_detect, nsp_excerpt, type_excerpt, hop_length=HOP_LENGTH):
"""Data generator.
excerpt: data of one audio file.
n_detect: number of excerpts to be detected.
nsp_detect: number of samples in one excerpt.
"""
tile_times = int(np.ceil(NSP_SRC/nsp_excerpt))
while True:
for i in range(n_detect):
if type_excerpt == 'onset':
src_batch = np.array([audio_data[int(i*hop_length):int(i*hop_length+nsp_excerpt)]], dtype=K.floatx())
elif type_excerpt == 'segment':
src_batch = np.array([np.tile(audio_data[int(i*hop_length):int(i*hop_length+nsp_excerpt)],tile_times)[:NSP_SRC]],
dtype=K.floatx())
src_batch = src_batch[:, np.newaxis, :] # make (batch, N) to (batch, 1, N) for kapre compatible
yield src_batch
def intervals1tointervals01(segintervals1, paudio_duration):
idx2del = []
for idx in np.arange(1,len(segintervals1)):
if segintervals1[idx-1][1] >= segintervals1[idx][0]:
segintervals1[idx] = [segintervals1[idx-1][0],segintervals1[idx][1]]
idx2del.append(idx-1)
segintervals1 = np.delete(segintervals1, idx2del, axis=0)
labels = []
segintervals01 = np.zeros((len(segintervals1)*2+1,2))
for idx in range(len(segintervals01)):
if idx==0:
segintervals01[idx] = [0, segintervals1[0][0]]
labels.append('np')
elif idx==len(segintervals01)-1:
segintervals01[idx] = [segintervals1[-1][-1],paudio_duration]
labels.append('np')
elif idx%2:
segintervals01[idx] = segintervals1[int(np.floor(idx/2))]
labels.append('p')
else:
segintervals01[idx] = [segintervals1[int(np.floor(idx/2)-1)][-1],segintervals1[int(np.floor(idx/2))][0]]
labels.append('np')
idx2del = []
for idx, seginterval in enumerate(segintervals01):
if seginterval[0]==seginterval[1]:
idx2del.append(idx)
segintervals01 = np.delete(segintervals01, idx2del, axis=0)
labels = np.delete(labels, idx2del)
return segintervals1, segintervals01, labels
def main(args):
music_type = args.music_type
onset_threshold = args.onset_threshold
segment_threshold = args.segment_threshold
if music_type == 'synth':
dataset_name = 'pedal-times_test.npz'
npz_path = os.path.join(DIR_PEDAL_METADATA, dataset_name)
elif music_type == 'real':
npz_dir = os.path.join(DIR_REAL_DATA, 'reference')
dataset_name = 'pedal-times_realaudio.npz'
npz_path = os.path.join(npz_dir, dataset_name)
else:
print("Error: Please set the music_type to either synth or real!")
tracks = np.load(npz_path)
filenames = tracks['filename']
pedal_offset_gt_tracks = tracks['pedal_offset']
pedal_onset_gt_tracks = tracks['pedal_onset']
dataset_type = 'segment'
input_type = 'melspectrogram'
model_name = 'cnnkernel-{}'.format(input_type)
exp_name = 'sub-{}_{}_multift'.format(dataset_type, model_name)
segment_model = keras.models.load_model(os.path.join(DIR_SAVE_MODEL,"{}_best_model.h5".format(exp_name)),
custom_objects={'Melspectrogram':Melspectrogram})
segment_model.load_weights(os.path.join(DIR_SAVE_MODEL,"{}_best_weights.h5".format(exp_name)))
# # get model
# model_name = 'multi_kernel'
# segment_exp_name = 'segment_{}'.format(model_name)
# onset_exp_name = 'onset_{}'.format(model_name)
# onset_model = keras.models.load_model(os.path.join(DIR_SAVE_MODEL,"{}_best_model.h5".format(onset_exp_name)),
# custom_objects={'Melspectrogram':Melspectrogram})
# onset_model.load_weights(os.path.join(DIR_SAVE_MODEL,"{}_best_weights.h5".format(onset_exp_name)))
# segment_model = keras.models.load_model(os.path.join(DIR_SAVE_MODEL,"{}_best_model.h5".format(segment_exp_name)),
# custom_objects={'Melspectrogram':Melspectrogram})
# segment_model.load_weights(os.path.join(DIR_SAVE_MODEL,"{}_best_weights.h5".format(segment_exp_name)))
# do detection
filename_records = []
accuracys = []
precisions = []
recalls = []
fscores = []
support0s = []
support1s = []
fp_rates = []
fn_rates = []
# append to lists
filename_records = []
support0s = []
support1s = []
acc01_frms = []
p1_frms = []
r1_frms = []
f1_frms = []
fp_rates = []
fn_rates = []
# boundary matrixs
boundary_wins = []
p1_sbrs = []
r1_sbrs = []
f1_sbrs = []
r2e_deviation1s = []
e2r_deviation1s = []
p01_sbrs = []
r01_sbrs = []
f01_sbrs = []
r2e_deviation01s = []
e2r_deviation01s = []
# structural matrixs
p_pairwises = []
r_pairwises = []
f_pairwises = []
nce_overs = []
nce_unders = []
nce_fs = []
rand_indexs = []
adjrand_indexs = []
mutual_infos = []
adjmutual_infos = []
normmutual_infos = []
for filename_idx, filename in enumerate(filenames):
pedal_offset_gt = np.array(pedal_offset_gt_tracks[filename_idx])
pedal_onset_gt = np.array(pedal_onset_gt_tracks[filename_idx])
if music_type == 'synth':
paudio_path = os.path.join(DIR_RENDERED, '{}-p.wav'.format(filename))
elif music_type == 'real':
paudio_dir = os.path.join(DIR_REAL_DATA, '{}'.format(filename))
paudio_path = os.path.join(paudio_dir, '{}.wav'.format(filename))
paudio, sr = librosa.load(paudio_path, sr=SR)
print("{}...".format(filename))
if onset_threshold>0:
len_onset_shape = int(SR * (TRIM_SECOND_BEFORE + TRIM_SECOND_AFTER))
onsethop_length = HOP_LENGTH
onsethop_duration = onsethop_length/SR
n_ponset = int(np.ceil((len(paudio)-len_onset_shape)/onsethop_length))
gen_ponset = data_gen(paudio, n_ponset, len_onset_shape, 'onset', hop_length=onsethop_length)
pred_ponset = onset_model.predict_generator(gen_ponset, n_ponset // batch_size)
pred_ponset_filter = medfilt(pred_ponset[:,1],15)
frmtime_ponset = np.arange(n_ponset)*onsethop_duration+TRIM_SECOND_BEFORE
pred_ponset_todetect = np.copy(pred_ponset_filter)
pred_ponset_todetect[pred_ponset_todetect<onset_threshold]=0
pred_ponset_todetect[pred_ponset_todetect>=onset_threshold]=1
len_segment_shape = int(SR * MIN_SRC)
seghop_length = HOP_LENGTH*10
seghop_duration = seghop_length/SR
n_psegment = int(np.ceil((len(paudio)-len_segment_shape)/seghop_length))
gen_psegment = data_gen(paudio, n_psegment, len_segment_shape, 'segment', hop_length=seghop_length)
pred_psegment = segment_model.predict_generator(gen_psegment, n_psegment // batch_size)
pred_psegment_filter = medfilt(pred_psegment[:,1],3)
frmtime_psegment = np.arange(n_psegment)*seghop_duration+MIN_SRC/2
paudio_firstonsettime = librosa.frames_to_time(librosa.onset.onset_detect(y=paudio, sr=SR), sr=SR)[0]
n_segment_tozero=0
for t in frmtime_psegment:
if t < paudio_firstonsettime:
n_segment_tozero+=1
else:
break
pred_psegment_filter[:n_segment_tozero] = 0
pred_psegment_todetect = np.copy(pred_psegment_filter)
pred_psegment_todetect[pred_psegment_todetect<segment_threshold]=0
pred_psegment_todetect[pred_psegment_todetect>=segment_threshold]=1
# decide the initial indexes of pedal segment boundary
onseg_initidxs = []
offseg_initidxs = []
for idx, v in enumerate(pred_psegment_todetect):
if idx>0 and idx<len(pred_psegment_todetect)-1:
if pred_psegment_todetect[idx-1]==0 and v==1 and pred_psegment_todetect[idx+1]==1:
onseg_initidxs.append(idx-1)
elif pred_psegment_todetect[idx-1]==1 and v==1 and pred_psegment_todetect[idx+1]==0:
offseg_initidxs.append(idx+1)
if offseg_initidxs[0] <= onseg_initidxs[0]:
del offseg_initidxs[0]
if onseg_initidxs[-1] >= offseg_initidxs[-1]:
del onseg_initidxs[-1]
if (len(onseg_initidxs) != len(offseg_initidxs)) or not len(pedal_offset_gt) or not len(pedal_onset_gt):
print(" skip!")
else:
onseg_idxs = []
offseg_idxs = []
for idx in range(len(onseg_initidxs)):
if onseg_initidxs[idx] < offseg_initidxs[idx]:
onseg_idxs.append(onseg_initidxs[idx])
offseg_idxs.append(offseg_initidxs[idx])
if not len(onseg_idxs) or not len(offseg_idxs):
print(" no detection!")
else:
if onset_threshold>0:
# decide the boundary times in seconds, combining the effect of pedal onset
onseg_times = []
offseg_times = []
for idx, onseg_idx in enumerate(onseg_idxs):
onponset_idx = onseg_idx*10-5
if any(pred_ponset_todetect[onponset_idx-5:onponset_idx+5]):
offseg_idx = offseg_idxs[idx]
offseg_times.append(frmtime_psegment[offseg_idx])
onseg_times.append(frmtime_psegment[onseg_idx])
else:
onseg_times = frmtime_psegment[onseg_idxs]
offseg_times = frmtime_psegment[offseg_idxs]
segintervals_est = np.stack((np.asarray(onseg_times),np.asarray(offseg_times)), axis=-1)
# set the ground truth and estimation results frame by frame
paudio_duration = librosa.get_duration(y=paudio, sr=SR)
n_frames = int(np.ceil(paudio_duration/seghop_duration))
segframes_gt = np.zeros(n_frames)
segframes_est = np.zeros(n_frames)
pedal_offset_gt = np.array(tracks['pedal_offset'][filename_idx])
pedal_onset_gt = np.array(tracks['pedal_onset'][filename_idx])
longpseg_idx = np.where((pedal_offset_gt-pedal_onset_gt)>seghop_duration)[0]
longseg_onset_gt = pedal_onset_gt[longpseg_idx]
longseg_offset_gt = pedal_offset_gt[longpseg_idx]
segintervals_gt = np.stack((longseg_onset_gt,longseg_offset_gt), axis=-1)
for idx, onset_t in enumerate(longseg_onset_gt):
offset_t = longseg_offset_gt[idx]
onset_frm = int(onset_t//seghop_duration)
offset_frm = int(offset_t//seghop_duration)
segframes_gt[onset_frm:offset_frm] = 1
for idx, onset_t in enumerate(onseg_times):
offset_t = offseg_times[idx]
onset_frm = int(onset_t//seghop_duration)
offset_frm = int(offset_t//seghop_duration)
segframes_est[onset_frm:offset_frm] = 1
# set the ground truth and estimation results as interval format
segintervals1_gt, segintervals01_gt, labels_gt = intervals1tointervals01(segintervals_gt, paudio_duration)
segintervals1_est, segintervals01_est, labels_est = intervals1tointervals01(segintervals_est, paudio_duration)
# Metrics for frame-wise label 'p'
acc01_frm = accuracy_score(segframes_gt,segframes_est)
p1_frm, r1_frm, f1_frm, support = precision_recall_fscore_support(segframes_gt,segframes_est)
tn, fp, fn, tp = confusion_matrix(segframes_gt,segframes_est).ravel()
fp_rate = fp/(fp+tn)
fn_rate = fn/(fn+tp)
# performance matrix based on boundary annotation of 'p'
# window depends on duration of a beat
onset_env = librosa.onset.onset_strength(paudio, sr=SR)
tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=SR)[0]
beat_insecond = 60/tempo
p1_sbr,r1_sbr,f1_sbr = mir_eval.segment.detection(segintervals1_gt, segintervals1_est, window=beat_insecond)
r2e_deviation1, e2r_deviation1 = mir_eval.segment.deviation(segintervals1_gt, segintervals1_est)
# performance matrix based on boundary annotation of both 'p' and 'np'
p01_sbr,r01_sbr,f01_sbr = mir_eval.segment.detection(segintervals01_gt, segintervals01_est, window=beat_insecond)
# performance matrix based on structural annotation
scores = mir_eval.segment.evaluate(segintervals01_gt, labels_gt, segintervals01_est, labels_est)
r2e_deviation01, e2r_deviation01 = [scores['Ref-to-est deviation'], scores['Est-to-ref deviation']]
p_pairwise, r_pairwise, f_pairwise = [scores['Pairwise Precision'], scores['Pairwise Recall'],
scores['Pairwise F-measure']]
rand_index, adjrand_index = [scores['Rand Index'], scores['Adjusted Rand Index']]
mutual_info, adjmutual_info, normmutual_info = [scores['Mutual Information'], scores['Adjusted Mutual Information'],
scores['Normalized Mutual Information']]
nce_over, nce_under, nce_f = [scores['NCE Over'], scores['NCE Under'], scores['NCE F-measure']]
# append to lists
filename_records.append(filename)
support0s.append(support[0])
support1s.append(support[1])
acc01_frms.append(acc01_frm)
p1_frms.append(p1_frm[1])
r1_frms.append(r1_frm[1])
f1_frms.append(f1_frm[1])
fp_rates.append(fp_rate)
fn_rates.append(fn_rate)
# boundary matrixs
boundary_wins.append(beat_insecond)
p1_sbrs.append(p1_sbr)
r1_sbrs.append(r1_sbr)
f1_sbrs.append(f1_sbr)
r2e_deviation1s.append(r2e_deviation1)
e2r_deviation1s.append(e2r_deviation1)
p01_sbrs.append(p01_sbr)
r01_sbrs.append(r01_sbr)
f01_sbrs.append(f01_sbr)
r2e_deviation01s.append(r2e_deviation01)
e2r_deviation01s.append(e2r_deviation01)
# structural matrixs
p_pairwises.append(p_pairwise)
r_pairwises.append(r_pairwise)
f_pairwises.append(f_pairwise)
nce_overs.append(nce_over)
nce_unders.append(nce_under)
nce_fs.append(nce_f)
rand_indexs.append(rand_index)
adjrand_indexs.append(adjrand_index)
mutual_infos.append(mutual_info)
adjmutual_infos.append(adjmutual_info)
normmutual_infos.append(normmutual_info)
print(" done!")
rows = zip(*[filename_records, support0s, support1s, acc01_frms, p1_frms, r1_frms, f1_frms, fp_rates, fn_rates,
boundary_wins, p1_sbrs, r1_sbrs, f1_sbrs, r2e_deviation1s, e2r_deviation1s,
p01_sbrs, r01_sbrs, f01_sbrs, r2e_deviation01s, e2r_deviation01s,
p_pairwises, r_pairwises, f_pairwises, nce_overs, nce_unders, nce_fs, rand_indexs,
adjrand_indexs, mutual_infos, adjmutual_infos, normmutual_infos])
column_names = ['filename_record', 'support0', 'support1', 'acc01_frm', 'p1_frm', 'r1_frm', 'f1_frm', 'fp_rate', 'fn_rate',
'boundary_win', 'p1_sbr', 'r1_sbr', 'f1_sbr', 'r2e_deviation1', 'e2r_deviation1',
'p01_sbr', 'r01_sbr', 'f01_sbr', 'r2e_deviation01', 'e2r_deviation01',
'p_pairwise', 'r_pairwise', 'f_pairwise', 'nce_over', 'nce_under', 'nce_f', 'rand_index',
'adjrand_index', 'mutual_info', 'adjmutual_info', 'normmutual_info']
df = pd.DataFrame(rows, columns = column_names)
if music_type == 'synth':
df.to_csv('psegment-testresult_onset{}_seg{}.csv'.format(int(onset_threshold*100),int(segment_threshold*100)))
elif music_type == 'real':
df.to_csv('psegment-testresult-realaudio_onset{}_seg{}.csv'.format(int(onset_threshold*100),int(segment_threshold*100)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description = "Batch testing the pedal detection method on music pieces.")
parser.add_argument("music_type",
type = str,
help = "Test one either synth or real.")
parser.add_argument("onset_threshold",
type = float,
default = 0.98,
help = "Threshold on the output of Conv2D-onset")
parser.add_argument("segment_threshold",
type = float,
default = 0.98,
help = "Threshold on the output of Conv2D-segment")
main(parser.parse_args())